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Abstract

Planting diverse forests has been proposed as a means to increase long-term

carbon (C) sequestration while providing many co-benefits. Positive tree

diversity–productivity relationships are well established, suggesting more

diverse forests will lead to greater aboveground C sequestration. However, the

effects of tree diversity on belowground C storage have the potential to either

complement or offset aboveground gains, especially during early stages of

afforestation when potential exists for large losses in soil C due to soil decom-

position. Thus, experimental tests of the effects of planted tree biodiversity on

changes in whole-ecosystem C balance are needed. Here, we present changes

in above- and belowground C pools 6 years after the initiation of the Forests

and Biodiversity experiment (FAB1), consisting of high-density plots of one,

two, five, or 12 tree species planted in a common garden. The trees included a

diverse range of native species, including both needle-leaf conifer and broad-

leaf angiosperm species, and both ectomycorrhizal and arbuscular mycorrhizal

species. We quantified the effects of species richness, phylogenetic diversity,

and functional diversity on aboveground woody C, as well as on mineral soil C

accumulation, fine root C, and soil aggregation. Surprisingly, changes in

aboveground woody C pools were uncorrelated to changes in mineral soil C

pools, suggesting that variation in soil C accumulation was not driven by the

quantity of plant litter inputs. Aboveground woody C accumulation was

strongly driven by species and functional identity; however, plots with higher

species richness and functional diversity accumulated more C in aboveground

wood than expected based on monocultures. We also found weak but signifi-

cant effects of tree species richness, identity, and mycorrhizal type on soil C

accumulation. To assess the role of the microbial community in mediating

these effects, we further compared changes in soil C pools to phospholipid

fatty acid (PLFA) profiles. Soil C pools and accumulation were more strongly

correlated with specific microbial clades than with total microbial biomass or
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plant diversity. Our results highlight rapidly emerging and microbially medi-

ated effects of tree biodiversity on soil C storage in the early years of afforesta-

tion that are independent of gains in aboveground woody biomass.
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INTRODUCTION

Current warming due to rising atmospheric carbon dioxide
has prompted a call for “nature-based climate solutions”
that increase ecosystem carbon (C) sequestration, which
includes managing forests for C storage (Bastin
et al., 2019; Fargione et al., 2018). Although tree species
vary greatly in their initial productivity (Bukoski
et al., 2022), there is strong evidence that forest biodiver-
sity increases long-term aboveground productivity, resil-
ience, and other important ecosystem functions based on
both observational (Liang et al., 2016) and experimental
(Feng et al., 2022; Grossman et al., 2017; Huang
et al., 2018) studies. As a result, there is growing consensus
that future afforestation efforts should prioritize tree biodi-
versity (Liu et al., 2018; Messier et al., 2022). Critically, the
impacts of planted tree diversity on belowground C storage
are less clear (X. Chen et al., 2020; Ma et al., 2020), despite
the fact that the bulk of C is stored below ground in most
forests (Pan et al., 2011). Thus, a better understanding of
planted diversity effects on whole-system C pools
(i.e., above- and belowground) is needed to inform current
afforestation efforts (Bossio et al., 2020; Mayer et al., 2020),
especially during the early years of afforestation when
large losses in soil C are commonly observed (Deng
et al., 2014; Potvin et al., 2011).

Tree diversity can influence soil C accumulation
through multiple causal pathways, and these two variables
are often (Augusto & Boča, 2022; Chen et al., 2023;
S. Chen, Wang, et al., 2018; X. Chen et al., 2020; Fanin
et al., 2022) but not always positively related (Beugnon
et al., 2023; Martin-Guay et al., 2022; Strukelj et al., 2021).
Soil C is ultimately derived from new inputs of plant litter,
root exudates, and mycorrhizal hyphae (Augusto &
Boča, 2022; Mayer et al., 2020; See et al., 2022), and the
quantity of these C fluxes to soils depend on primary pro-
ductivity. Although the positive effect of tree diversity on
productivity should increase the total flux of C into soils
(i.e., total above- and belowground plant litter C flux;
Ma & Chen, 2016; Zheng et al., 2019), evidence that diver-
sity influences belowground productivity is equivocal
(Archambault et al., 2019; Martin-Guay et al., 2020;
Schuster et al., 2023). Beyond affecting the total flux of C

into soils, plant diversity exerts strong effects on soil
microbial communities (C. Chen et al., 2019; Cline et al.
2018; Grossman, Butterfield, et al., 2019; Khlifa
et al., 2017; Strukelj et al., 2021; but see Rivest et al., 2019),
which may, in turn, affect the residence time of soil
C. Tree composition influences microbial community
function directly via litter substrate chemistry (Angst
et al., 2019; Bray et al., 2012) and indirectly via interac-
tions between mycorrhizal fungi and soil saprotrophs
(Fernandez & Kennedy, 2016; Frey, 2019). Microbial
decomposition represents a dominant pathway for soil C
loss, and the deposition of microbial residues
(i.e., necromass) represents a large proportion of soil C
(Sokol et al., 2022). Thus, tree species effects on microbial
processes may be just as important for net soil C storage as
tree species effects on the quantity of the C flux into soils.

Beyond species richness, tree functional identity
(e.g., mycotype, leaf type) can also be helpful in under-
standing C sequestration. There have been recent calls for
common garden experiments that can tease apart tree spe-
cies and functional group effects from diversity effects on
soil C (Mayer et al., 2020). Mounting evidence suggests
that arbuscular mycorrhizal (AM) and ectomycorrhizal
(EcM) trees may promote different C cycling dynamics
through different microbial associations, litter quality, and
soil properties (Heděnec et al., 2023; Phillips et al., 2013;
Read & Perez-Moreno, 2003). In particular, AM fungi have
garnered attention for their role in the formation and sta-
bility of soil aggregates (Rillig, 2004; Rillig et al., 2015;
Wright & Upadhyaya, 1998), although EcM fungi and
other saprotrophs have recently also been implicated in
soil aggregation (Dick et al., 2022; Filialuna &
Cripps, 2021; Zheng et al., 2014). Furthermore, AM trees
may lead to faster accumulation of mineral-associated
organic matter with a long residence time than EcM trees
in the same soil (Craig et al., 2018, 2022). Finally, mycor-
rhizal type has been increasingly linked to differential
diversity effects on aboveground productivity via plant–soil
feedbacks (Bennett et al., 2017; Crawford et al., 2019; Deng
et al., 2023; Dietrich et al., 2023), which may also affect
belowground productivity and soil C accumulation.

In addition to mycotype, leaf type (broadleaf
vs. needle-leaf) also affects belowground C accumulation.
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Broadleaf forests accumulate soil organic C faster in min-
eral soils, while needle-leaf forests sequester C faster in
organic horizons, and these vertical spatial patterns may
lead to complementary effects where both groups are pre-
sent (Laganière et al., 2010). Likewise, broadleaf and
needle-leaf trees also differ in litter chemistry (Kothari
et al., 2023), and the presence of multiple leaf types in lit-
ter has been linked with changes in microbial commu-
nity composition (Chapman et al., 2013; Grossman,
Butterfield, et al., 2019) and decomposition rates (Liu
et al., 2020, but see Porre et al., 2020) in comparison with
litter of a single leaf type. However, many of these studies
are correlational, and it can be difficult to tease apart
interactions between functional groups that have consid-
erable within-group variation in functional traits (Chen,
Ding, et al., 2018; Mueller et al., 2015; Rożek et al., 2023).
Thus, co-located experimental plantings (i.e., common
garden experiments) are needed to understand the
impacts of tree functional identity and diversity on soil C
sequestration, especially in relation to aboveground
woody C gains.

One way that tree diversity may influence soil C accu-
mulation is through aggregate formation. Water-stable soil
aggregates can protect organic matter from microbial
decomposition (Six et al., 2004). While this process is par-
tially controlled by abiotic factors like soil texture and
chemistry, biotic factors are also important (Regelink
et al., 2015; Six et al., 2004). Plants influence aggregation
through their root structures and distribution, root exu-
dates, and through their effects on the soil microbial com-
munity (Amézketa, 1999; Angers & Caron, 1998; Reid &
Goss, 1981; Rillig et al., 2002; Scott, 1998). Therefore, tree
diversity could impact aggregation if it changes root bio-
mass or structure. Additionally, tree diversity may influence
aggregate formation due to its effects on soil microbial com-
munities, which play an important role in aggregate forma-
tion and stability (Baumert et al., 2018; Lehmann
et al., 2017; Tisdall, 1994). However, few studies have inves-
tigated the impacts of tree diversity on aggregation, and
knowledge about drivers of soil aggregation comes largely
from grasslands and agricultural fields rather than forests.

In this study, we analyzed changes in above- and
belowground C pools 6 years after planting in a tree bio-
diversity experiment planted in sandy soils in central
Minnesota, USA. Trees were chosen to represent a func-
tionally and phylogenetically diverse range of native spe-
cies, including both needle-leaf conifers and broadleaf
angiosperms, and both EcM and AM species. Our pri-
mary objective was to assess the relationship between
changes in above- and belowground C storage during the
early stages of afforestation. Our secondary objective was
to quantify the effects of planted species richness, func-
tional diversity, and phylogenetic diversity on above- and

belowground C pools. Finally, we used microbial bio-
markers to assess the role of microbial composition, as
influenced by the planted tree diversity, in mediating soil
C accumulation.

METHODS

Site description

Our study site was the Forests and Biodiversity experiment
(FAB1) at Cedar Creek Ecosystem Science Reserve, East
Bethel, Minnesota, USA (Grossman et al., 2017). Cedar
Creek has a mesic continental climate with warm sum-
mers, cold winters, a mean annual temperature of ~7�C,
and a mean annual precipitation of 780 mm (Pellegrini
et al., 2021). The soils are characteristic of the Anoka Sand
Plain, where upland regions (including FAB1) have well-
drained soils comprising fine- and medium-textured sands
(Johnston et al., 1996).

FAB1 is part of the IDENT network of tree diversity
experiments (Tobner et al., 2014). Here, we briefly summa-
rize the experimental design laid out in Grossman et al.
(2017). Trees were planted in a common garden in an
abandoned agricultural old field in spring 2013 to
disentangle the effects of tree taxonomic, functional, and
phylogenetic diversity on ecosystem function. The
preexisting herbaceous biomass at the site was burned off
before planting, although grasses and forbs (primarily
AM-associated) were allowed to reestablish after planting;
plots were lightly weeded on occasion until 2016. In each
4 × 4 m plot, 64 saplings were planted in a 0.5 m grid. The
species pool included eight deciduous, broadleaf angio-
sperms (Acer negundo, Acer rubrum, Betula papyrifera,
Quercus alba, Quercus ellipsoidalis, Quercus macrocarpa,
Quercus rubra, and Tilia americana) and four evergreen,
needleleaf conifers (Juniperus virginiana, Pinus banksiana,
Pinus resinosa, Pinus strobus). Three species (A. negundo,
A. rubrum, and J. virginiana) associate with AM fungi,
while the rest associate with EcM fungi. Plot compositions
included monocultures and various combinations of two,
five, or all 12 species. In multispecies plots, species were
planted in equal or nearly equal abundance. Each mono-
culture and two-species plot was replicated across each of
three blocks separated by 4.5 m buffers, and the 12-species
combination was replicated ten times across the experi-
ment. A layer of non-native mulch was spread across the
ground to reduce understory growth, and commercial
mycorrhizal inoculum including both AM and EcM spe-
cies was added to each seedling (Grossman et al., 2017).
Dead seedlings were replanted in spring 2014 and 2015;
mortality rates since the final replanting have ranged from
0% to 80% (median 13%) across plots.
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When we sampled in 2019, the degree of canopy clo-
sure varied widely. In late summer 2018 we measured the
fraction of light reaching 5 cm above the ground with an
AccuPAR LP-80 ceptometer (METER Group, Pullman,
WA, USA) in a sample of 110 plots on overcast days. The
median light penetration was 1.4% in needle-leaf conifer
plots (10th–90th percentile: 0.4%–2.8%), 2.7% in mixed
plots (10th–90th percentile: 0.5%–4.9%), 9.8% in broadleaf
angiosperm plots with B. papyrifera (10th–90th percen-
tile: 4.3%–25.4%), and 30.8% in broadleaf angiosperm
plots without B. papyrifera (10th–90th percentile: 13.7%–
53.3%). More open plots tended to have more AM-
associated herbaceous vegetation in the understory.

Soil sampling and processing

In July 2019, we collected samples from the top 20 cm of
mineral soil from 66 plots: 36 monocultures, 10 bicultures,
10 five-species, and 10 12-species plantings. We chose the
bicultures to capture planted variation in species, leaf type
(broadleaf angiosperm vs. needle-leaf conifer) and mycotype
(AM vs. EcM). In each plot we systematically sampled the
plot center, and at 1.7 m diagonally from each corner, then
composited all 5 cores in the field. Samples were immedi-
ately weighed and sieved to 2 mm, taking care to remove
all roots. A subsample of the soil was taken to determine
the gravimetric moisture content by weighing the subsam-
ple, drying the soil at 105�C, and reweighing. A separate
subsample was used to measure pH in a 2:1 water and soil
solution. Another subsample was oven-dried and ground,
after which the C and N concentrations were determined
through dry combustion on an elemental analyzer (Costech
Analytical Technologies Inc., Valencia, CA, USA).

Prior to planting in 2013, soil samples were collected
at depths of 0–15 cm and 15–30 cm in all 66 plots, with
bulk density measured at a subset of five plots per block
(15 plots total). We used these samples to estimate the
initial soil C concentrations to 20 cm based on a weighted
average (i.e., 0.75 × [0–15 cm] + 0.25 × [15–30 cm]). We
similarly estimated bulk density to 20 cm as a depth-
weighted average for each of the 15 measured plots, then
calculated block-level means (range 1.33–1.45 among
blocks). We calculated the 6 year change in soil C pools
as the plot-level change in soil C concentration from 2013
to 2019 multiplied by the block-averaged 2013 bulk den-
sity. Mineral soils at this site are extremely sandy (about
94%) and have low organic matter, with bulk density
ranging from 1.3 to 1.5 in the top 38 cm of the profile
(Grigal et al., 1974). A recent 50-year study of old field
succession here found that bulk density was unaffected
by time since abandonment, nutrient addition, or
changes in soil C (Seabloom et al., 2021). Thus, we

assumed that changes in bulk density were minimal over
the 6 years of our study, and far smaller than the changes
observed in soil C concentrations.

Fine roots separated during the initial soil sieving
process were later carefully washed to remove soil parti-
cles and oven-dried at 65�C to a constant mass. Because
we were unable to sort roots by species, this pool also
included roots of herbaceous species found in the under-
stories of some plots. However, we believe that indirect
effects of planting treatments like those on herbaceous
vegetation to be of interest in understanding C pools in
afforestation. We estimated root C content as 50% of bio-
mass (Thomas & Martin, 2012).

We measured the relative size distribution of water-
stable aggregates in each soil sample following a wet-
sieving procedure modified from Six (1998). Briefly, 80 g
soil samples were submerged in water and sieved through
a 250 μm screen for 2 min while gently agitating to deter-
mine macroaggregate (250–2000 μm diameter) contents.
Soil which passed through this screen was then sieved in
a similar fashion through a 53 μm screen. Size fractions
were oven-dried (105�C) and weighed to determine the
proportional mass of each aggregate fraction.

Aboveground woody C estimation

Beginning in 2013, we surveyed every living tree annually
after the growing season concluded. We measured the
height of each tree to the nearest 0.5 cm. For trees shorter
than 137 cm, we measured the basal diameter (5 cm from
the ground) to the nearest 0.05 cm. The first year that a
tree crossed the 137 cm threshold, we measured both the
basal diameter and the diameter at breast height (dbh; at
137 cm) to the nearest 0.05 cm. In subsequent years, we
measured only dbh and not basal diameter, with some
exceptions.

Because species in the experiment varied several-fold
in their average aboveground relative growth rates
(Grossman et al., 2017; Kothari et al., 2021), we adopted
different approaches for estimating their aboveground
woody C pools in 2019. We divided species into two
groups: one in which <65% had a measurable dbh in 2019
(Acer negundo, Acer rubrum, Quercus alba, Quercus
ellipsoidalis, Quercus macrocarpa, Quercus rubra, and Tilia
americana); and another in which >90% of individuals did
(Betula papyrifera, Juniperus virginiana, Pinus banksiana,
Pinus resinosa, and Pinus strobus) (no species had between
65% and 90% of individuals with measurable dbh).

For the first group of species, we calculated conical
volume based on basal diameter and height. For those
trees whose basal diameter was not measured in 2019, we
estimated it using species-specific ordinary least-squares
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(OLS) regressions built using data combined across
years—predicting basal diameter from height and dbh in
any year when all three were measured (RMSE/
range = 8.4%–16.5% across the 12 species). We multiplied
the conical volume by species-specific wood density esti-
mates from Jenkins et al. (2003) to yield biomass.

For the second group of species, we compared each
tree’s dimensions in 2019 to the species-specific mini-
mum values of height and dbh that Lambert et al. (2005)
sampled to build allometric equations for biomass esti-
mation. For trees that exceeded these height and dbh
thresholds, we used Lambert et al. (2005)’s species-
specific dbh-based equations (J. virginiana, P. resinosa,
and P. strobus) or dbh- and height-based equations
(P. banksiana and B. papyrifera) to estimate total woody
stem, bark, and branch biomass. For trees that fell short
of either threshold, we calculated the conical volume as
for the first group of species.

Finally, we multiplied the biomass of all trees by
species-specific wood C concentrations (Lamlom &
Savidge, 2003) to estimate aboveground woody C. Because
C concentration is nearly equal across tissues of any given
species (Thomas & Martin, 2012), we assumed that these
values applied equally across components of the wood and
bark. Although our estimates excluded coarse woody
debris from dead branches or trees, we seldom observed
any noticeable buildup at this stage of the experiment.
Given that the experimental plots were bare of trees just
before planting, we assumed the initial aboveground
woody C pool to be zero. As a result, the increase in above-
ground woody C is simply the amount of aboveground
woody C present at the end of 2019.

Net biodiversity effects

The difference between mixture performance and
monoculture-based expectations is often called overyielding
or the net biodiversity effect (NBE). We calculated NBE of
aboveground woody, fine root, and soil C accumulation in
mixture plots as the total observed C pool minus the C
pool expected based on an average of the constituent spe-
cies’ monoculture plots in the same block, weighted by
their planting fraction in the mixture. Because our esti-
mates of aboveground woody C were species-specific, we
also additively partitioned aboveground woody NBE into
complementarity and selection effects following Loreau
and Hector (2001).

Microbial community analysis

In 2016 we collected neutral lipid fatty acid (NLFA) and
PLFA data for a subset of the plots sampled in 2019

(described in Grossman, Butterfield, et al., 2019). A total
of 33 plots were selected: 15 monocultures (three each of
A. negundo, A. rubrum, B. papyrifera, J. virginiana,
P. resinosa), all 10 of the 12-species plots, and 8 AM-EcM
bicultures—half of which included angiosperms only,
and half of which included conifers only (two each of
A. negundo–Q. alba, A. negundo–Q. ellipsoidalis,
J. virginiana–P. resinosa, J. virginiana–P. banksiana).
Briefly, for each plot, we extracted total NLFA and PLFA
present from 10 g of soil. Then, we extracted dissolved
fatty acids from 2 g of soil, converted them to methyl
esters, and ran them on a GC–MS spectrometer. Using
13:0 tridecanoic methyl ester as a standard, we then
converted the peak areas associated with 24 microbial
lipids to nmol g soil−1. We also calculated the relative
abundance of each lipid compared with the total lipid
mass in the sample. Grossman, Butterfield, et al. (2019)
details the PLFA/NLFAs measured and their associated
soil microbial groups.

Statistical analyses

We performed all statistical analyses in R v. 4.2.1 (R Core
Team, 2022). We assessed the effects of species richness,
functional diversity, and phylogenetic diversity on changes
in aboveground wood and soil C pools, as well as fine root
C in 2019. As richness-independent measures of func-
tional and phylogenetic diversity, we considered Laliberté
and Legendre’s (2010) functional dispersion (FDis) and
Helmus et al.’ (2007) phylogenetic species variability
(PSV), as reported by Grossman et al. (2017). In this previ-
ous study, FDis was calculated using species traits: wood
density, leaf mass per area, leaf N concentration, domi-
nant mycotype, leaf habit, leaf calcium concentration,
shade tolerance, drought tolerance, and waterlogging tol-
erance (Grossman et al., 2017). We set PSV equal to 0 for
monocultures. To evaluate which facets of diversity (rich-
ness, FDis, and PSV) helped explain aboveground woody,
soil, and root total C and NBE, we used a corrected
Akaike information criterion (AICc)-based model selec-
tion procedure. We compared OLS regression models
incorporating all three diversity facets with all models
nested within. When the ΔAICc >2 between the dbh top
models for a given outcome variable, we selected the
better-supported model; otherwise, we report on the most
parsimonious model with a ΔAICc <2 from the best-
supported model, or the one with lower AICc if multiple
were equally parsimonious. Due to high skewness in selec-
tion and complementarity effects, we used nonparametric
two-tailed Wilcoxon signed-rank tests to test whether they
differed on average from zero in mixtures.

We performed linear OLS regressions to assess the
relationships between different soil properties, microbial
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PLFA relative abundance, and C pools. We also
performed ANOVAs comparing the soil properties of
plots with different phylogenetic and functional groups,
including: leaf type (broadleaf angiosperms vs. needle-
leaf conifers), mycorrhizal type (AM vs. EcM), and the
two most common genera in the experiment (Quercus,
n = 4 species; Pinus, n = 3 species) binned as categori-
cal predictors. When comparing tree species effects on
the relationship between above- and belowground C
pools in the monocultures, we performed an ANOVA
with species identity, aboveground woody biomass, and
the interaction between them with the change in soil C
as the response variable. In most regression and
ANOVA models, we left out random effects for block
because they either resulted in a singular fit or in negli-
gible changes to model parameter estimates. However,
we chose to retain a block random intercept in analyses
of macroaggregates, soil moisture, and PLFAs because it
explained a much larger share of variation and had a
stronger effect on model parameters. We carried out
mixed-effects modeling in lme4 v. 1.1.32 (Bates et al.,
2015), calculating p-values with Satterthwaite’s degrees
of freedom method in lmerTest v. 3.1.3 (Kuznetsova
et al., 2017) and marginal and conditional R 2 (Rm

2 and
Rc

2) using the method of Nakagawa et al. (2017). We
carried out pairwise comparisons between functional
groups in emmeans v. 1.8.5 (Lenth, 2022). We used diag-
nostic plots to evaluate whether model assumptions
were met; when they were violated, we carried out
robustness checks to examine the models’ sensitivity to
alternate specifications, as described in Appendix S1.

We combined our hypotheses about the plot-level
drivers of aboveground woody C and soil C accumula-
tion using a structural equation model (SEM),
implemented using local estimation in piecewiseSEM v.
2.3.0 (Lefcheck, 2016). We sought mainly to test
whether the influence of species richness on soil C is
mediated in part by aboveground woody C in a holistic
causal framework. We took three experimentally
manipulated variables to be exogenous—tree species
richness (SR), the planted percent of AM-associated
trees (%AM), and the planted percent of needle-leaf
conifers (%Conifer). From these three variables, we
predicted three endogenous variables—aboveground
woody C, percent soil macroaggregates, and soil C accu-
mulation. Here, aboveground woody C is taken as a
measure of tree size and a proxy for tree inputs to the
soil via litter and exudates. We developed an initial
causal model based on a combination of a priori reason-
ing and data analyses described in prior sections, and
made minor changes to improve the model’s fit as
described in Appendix S2: Section S1.

RESULTS

Changes in C pools and their relationship
to edaphic factors

We found considerable variation in both above- and below-
ground C pools across plots. Mineral soil C pools in the top
20 cm varied more than twofold (range 14–33 Mg C ha−1),
while aboveground woody C varied by several orders of
magnitude (range 0.007–37.5 Mg C ha−1; median 9.10 Mg C
ha−1; Table 1). The change in soil C after 6 years of affores-
tation tended to be positive, with a mean increase of
4.8 Mg ha−1, but ranged widely from −6.0 to 13 Mg ha−1.
While the starting soil C pool in 2013 predicted the soil C
pool in 2019 (F1,64 = 18.6, p < 0.001, R2 = 0.21;
Appendix S2: Figure S1a), it did not significantly predict the
change in soil C (p > 0.1; Appendix S2: Figure S1b). Sur-
prisingly, the 6-year change in aboveground woody C pools
was unrelated to the 6-year change in soil C pools across all
plots (p > 0.7; Figure 1a). However, when we subset the
data to monoculture plots to evaluate tree species identity
effects on the change in soil C, we found a significant inter-
action between species identity and aboveground woody
biomass (F11,12 = 3.4, p = 0.02; Appendix S2: Figure S2),
suggesting that the relationship between woody biomass
and soil C was species-dependent. Fine root C pools varied
widely among plots, ranging from 0.232 to 9.59 Mg ha−1

(median 1.92 Mg ha−1; Table 1), and there was weak evi-
dence for a positive correlation between fine root pools and
the change in soil C pools (F1,60 = 3.0, p = 0.09, R2 = 0.03;
Appendix S2: Figure S3a). Lastly, there was evidence for a
negative relationship between aboveground woody C and
fine root C (F1,61 = 5.3, p = 0.02, R2 = 0.06, Appendix S2:
Figure S3b).

We examined three edaphic factors (macroaggregates,
soil moisture, and pH) measured in 2019 and their poten-
tial relationships with soil C pools in 2013 and 2019. The
percent mass of macroaggregates was correlated strongly
with soil moisture (F1,41.6 = 71.6, p < 0.001, Rm

2 = 0.63,
Rc

2 = 0.71; Appendix S2: Figure S4b) and more weakly
with pH (F1,63 = 4.6, p = 0.04, R2 = 0.05; Appendix S2:
Figure S5c). Among these three variables, macroaggre-
gates and soil moisture were strongly structured by experi-
mental block, having the highest values in Block 1 and
the lowest in Block 3 (Appendix S2: Figure S6). None of
these three variables showed a clear correlation with tree
species richness (p > 0.6 for all). Macroaggregates were
not correlated with the soil C pool in 2013 or 2019 or the
change in soil C (all p > 0.1). They also were unrelated to
the fine root C pool (p > 0.5). However, using simple lin-
ear regression on the plot level (i.e., not accounting for
block), we find a significant positive relationship between
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the percentage of soil C and macroaggregates in both
years (p < 0.05 for both; Appendix S2: Figure S7). Soil
moisture was positively correlated with soil C pools in
2013 (F1,33.8 = 15.2, p < 0.001, Rm

2 = 0.20, Rc
2 = 0.23)

and 2019 (F1,64 = 17.9, p < 0.001, R2 = 0.21; Appendix S2:
Figure S4a), but not the change in soil C (p > 0.1). Soil
pH was not associated with the initial soil C pool in 2013
(p > 0.5), but was positively (albeit weakly) associated
with soil C pools in 2019 (F1,64 = 5.0, p = 0.03, R2 = 0.06)
and with change in soil C (F1,64 = 9.6, p < 0.01,
R2 = 0.12, Appendix S2: Figure S5a,b).

Tree biodiversity effects on above- and
belowground C accumulation

Among species in monoculture, aboveground woody C
ranged by orders of magnitude from 0.08 Mg C ha−1 for

A. negundo to 31.5 Mg C ha−1 for P. banksiana, and was
generally higher among needle-leaves than broadleaves
(Table 1). We tested species richness, FDis, and PSV as
potential explanatory variables for aboveground woody
C. Across all FAB1 plots, the model chosen by our AICc-
based model selection procedure for explaining above-
ground woody C (F2,137 = 19.4; p < 0.001; R2 = 0.21)
retained both FDis (t(137) = −3.7; p < 0.001) and PSV
(t(137) = 5.9; p < 0.001). In this model, an increase in
FDis from the 10th to the 90th percentile among all plots
would be predicted to decrease aboveground woody C by
11.7 Mg ha−1 while a similar increase in PSV would be
predicted to increase aboveground woody C by
19.1 Mg ha−1. The two facets have a strong positive corre-
lation (F1,138 = 263.7; p < 0.001; R2 = 0.65), so their
opposing effects offset each other to some degree, and the
positive effect of PSV was larger in magnitude. Thus, tree
species identity had the greatest effect on aboveground

TAB L E 1 Average (standard error) of above- and belowground C accumulation and soil aggregate fractions across species

monocultures, and binned by species diversity, mycorrhizal type, and leaf type.

Plot type

Aboveground
woody

biomass C (Mg ha−1)
Fine root C

(g/m2)
Change

in soil C (kg/ha)

Macro-
aggregates
(% >250 μm)

Micro-
aggregates

(% 53–250 μm)
% soil
<53 μm

Monocultures Acer negundo 0.08 (0.06) 1.68 (0.20) 2.0 (0.3) 73.2 (4.3) 25.8 (4.3) 1.0 (0.1)

Acer rubrum 0.3 (0.1) 3.64 (1.39) 8.8 (2.1) 73.5 (8.3) 25.6 (7.9) 0.9 (0.4)

Betula papyrifera 10.7 (2.0) 2.6 (0.6) 4.8 (1.1) 74.8 (5.8) 24.5 (5.6) 0.7 (0.2)

Juniperus virginiana 12.7 (2.1) 2.2 (0.3) 7.9 (1.9) 74.8 (3.6) 24 (3.6) 1.3 (0.7)

Pinus banksiana 31.5 (3.7) 1.7 (0.6) 5.8 (0.4) 69.7 (4.9) 28.9 (4.8) 1.4 (0.2)

Pinus resinosa 20.6 (0.7) 2.1 (0.4) 2.6 (0.7) 68.3 (4.9) 29.8 (4.6) 1.9 (0.3)

Pinus strobus 31.0 (5.6) 1.1 (0.5) −0.4 (1.6) 73.4 (5.6) 25.8 (5.3) 0.8 (0.4)

Quercus alba 0.5 (0.1) 1.5 (0.5) 3.7 (0.9) 80.7 (2.6) 18.7 (2.4) 0.6 (0.2)

Quercus ellipsoidalis 0.6 (0.1) 2.1 (0.5) 1.4 (3.3) 77.9 (3.3) 21.1 (2.6) 1.0 (0.7)

Quercus rubra 1.2 (0.3) 1.7 (0.2) 6.3 (2.4) 77.2 (6.6) 22.1 (6.4) 0.8 (0.2)

Quercus macrocarpa 1.0 (0.2) 2.4 (0.2) 2.9 (1.4) 76 (4.5) 23.4 (4.3) 0.6 (0.3)

Tilia americana 1.3 (0.3) 1.7 (0.4) 3.2 (2.1) 75.8 (5.7) 23.3 (5.4) 1.0 (0.3)

Species
richness

One 9.3 (2.0) 2.0 (0.2) 4.1 (0.6) 74.6 (1.4) 24.4 (1.3) 1.0 (0.1)

Two 11.2 (3.8) 3.1 (0.9) 5.3 (1.0) 68.8 (2.4) 29.4 (2.4) 1.8 (0.2)

Five 12.9 (2.2) 1.9 (0.2) 4.3 (1.4) 74.5 (2.6) 24.0 (2.6) 1.5 (0.2)

Twelve 13.0 (1.1) 2.1 (0.5) 7.4 (1.2) 72.2 (2.2) 26.6 (2.1) 1.3 (0.3)

Mycorrhizal
type

AM 4.3 (2.2) 2.4 (1.3) 6.3 (1.3) 73.8 (2.9) 25.1 (2.8) 1.1 (0.2)

EcM 10.9 (2.5) 1.9 (0.2) 3.4 (0.6) 75.0 (1.5) 24.1 (1.4) 1.0 (0.1)

Mixed 11.2 (3.8) 3.1 (0.9) 5.3 (1.0) 71.5 (1.5) 27.0 (1.4) 1.5 (0.1)

Leaf form
(phylogenetic-
functional
groups)

Broadleaf angiosperms 1.7 (0.6) 2.5 (0.3) 5.6 (1.0) 75.0 (1.6) 24.0 (1.5) 1.0 (0.1)

Needle-leaf conifers 23.9 (2.0) 1.7 (0.2) 4.5 (0.9) 70.4 (1.7) 28.0 (1.7) 1.5 (0.2)

Mixed 13.5 (1.1) 2.0 (0.3) 4.5 (0.6) 73.2 (1.7) 25.4 (1.6) 1.4 (0.2)

Note: The No. plots varied according to plot type. Monocultures included three plots per species. For species richness, there were 36 one-species, 10 two-species,
10 five-species, and 10 Twelve-species plots. For mycorrhizal type, there were 9 AMF, 28 EcM, and 29 mixed plots. For leaf form, there were 30 broadleaf
angiosperm, 17 needle-leaf conifer, and 19 mixed plots.
Abbreviations: AM, arbuscular mycorrhizal; EcM, ectomycorrhizal.
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woody C, as evidenced by differences among monocul-
tures, but there was also evidence for a positive effect of
tree diversity.

Calculating NBE allowed us to separate the effect of
richness from identity. Mixture plots showed a positive
average NBE for aboveground woody C (t(103) = 3.0;
p = 0.003; mean of 1.1 Mg ha−1). The model selected for
explaining aboveground woody NBE (F2,101 = 10.3;
p < 0.001; R2 = 0.15) retained species richness (t(101)
= 2.1; p = 0.04) and FDis (t(101) = 2.8; p = 0.006). Based
on parameter estimates, each additional species would,
on average, increase NBE by 0.25 Mg C ha−1 (Figure 2b),
and an increase in FDis from the 10th to the 90th percen-
tile among multispecies plots would increase NBE by
2.75 Mg C ha−1. On average, there was some evidence for
positive complementarity effects (p = 0.058) but no evi-
dence for non-zero selection effects (p > 0.7).

We found detectable effects of tree species richness
on soil C sequestration after 6 years of planting. On aver-
age, the change in soil C pools since planting increased
by 0.27 Mg C ha−1 for each additional species
(F1,64 = 5.3, p = 0.02, R2 = 0.06; Figure 2c). The selected
model did not include FDis or PSV, but each had a mar-
ginally significant effect when considered alone (FDis:
F1,64 = 3.0, p = 0.09, R2 = 0.03; PSV: F1,64 = 3.2,
p = 0.08, R2 = 0.03; Appendix S2: Figure S8a,b). There
was weak evidence that mixtures showed positive NBE
on average in the change in soil C (t(29) = 1.95; p = 0.06;

mean of 1.40 Mg C ha−1). The selected model did not
retain any facet of diversity in explaining NBE for change
in soil C, but there was weak evidence for an effect of
species richness (F1,28 = 3.6, p = 0.07; R2 = 0.08). Based
on the model incorporating richness, each additional spe-
cies would on average increase NBE by 0.31 Mg C ha−1

(Figure 2d).
There was no evidence for a relationship between fine

root C and any facet of diversity (p > 0.4; Figure 2e). In
general, mixtures did not show a significantly non-zero
NBE in fine root C (p > 0.1; Figure 2f). The best-
supported model for explaining NBE only retained PSV
(F1,26 = 6.2, p = 0.02; R2 = 0.16), which was, in fact, neg-
atively correlated with fine root NBE, such that an
increase from the 10th to 90th percentile in PSV among
multispecies plots with root samples would cause a
decrease of 2.16 Mg ha−1 in root C NBE.

Tree composition and soil C accumulation

We found similar effects of leaf type (broadleaf angio-
sperm, needle-leaf conifer, or both) and genus (Quercus
vs. Pinus) on the soil properties we measured. Neither
leaf type nor genus had detectable effects on the change
in soil C (p > 0.5 for both; Figure 3a,b) or root C (p > 0.1
for both; Appendix S2: Figure S9a,b). However, soils in
plots containing broadleaf trees had a higher percentage
of macroaggregates (F2,60.01 = 5.8, p < 0.01, Figure 3d).
This same pattern held true in Quercus spp. plots in con-
trast to Pinus sp. plots (F1,17 = 10.9, p < 0.01, Figure 3e).
Soil moisture followed the same pattern as macroaggre-
gates, with higher soil moisture in broadleaf plots
(F2,63 = 6.4, p < 0.01, Appendix S2: Figure S9a) relative
to needle-leaf, and in Quercus spp. plots (F1,19 = 18.8,
p < 0.001, Appendix S2: Figure S9b) relative to Pinus
plots. In contrast to patterns observed with leaf type and
tree genus, we found that soil C accumulation varied by
mycotype (F2,63 = 3.2, p < 0.05), with a trend of greater
soil C accumulation in plots containing AM trees
(i.e., AM monocultures or bicultures) than EM trees
(Figure 3c). However, we found no detectable difference
in macroaggregates (Figure 3f) or root C (Appendix S2:
Figure S9c) between mycotypes (p > 0.1 for both).

Microbial composition and soil C
accumulation

Total microbial biomass (measured as total soil PLFA
concentration) measured in 2016 was largely unrelated to
differences in soil C accumulation and macroaggregate
pools across plots in 2019 (p > 0.2 for all). However, a few
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specific PLFAs positively correlated with soil C. In particu-
lar, the concentration of 10Me18:0 (actinomycetes) in the
soil showed a strong positive relationship with soil C in
2019 (F1,31 = 12.0, p < 0.01, R2 = 0.27; Figure 4). There
was also a marginally significant positive relationship
between soil C and the concentration of two Gram-
positive bacteria PLFAs: 15:0 iso (F1,29.6 = 3.3, p = 0.08,
Rm

2 = 0.08, Rc
2 = 0.26) and 17:0 anteiso (F1,30.3 = 3.8,

p = 0.06, Rm
2 = 0.11, Rc

2 = 0.21) as shown in Figure 4.
Despite correlations with soil C, there was no significant
relationship with the change in soil C for any of these
groups except for the relative abundance of 18:2ω6,9c,
which is a general fungal marker (F1,31 = 5.3, p < 0.05,
R2 = 0.14; Figure 4). The proportion of fungal PLFA

showed a marginally positive correlation to an increase in
soil C (F1,30.3 = 2.9, p = 0.10, Rm

2 = 0.08, Rc
2 = 0.09;

Appendix S2: Figure S10).

Structural equation modeling of
aboveground woody and soil C

Our final SEM (Figure 5) met typical criteria for
goodness-of-fit (Fisher’s C = 4.182, df = 6, p > 0.6; all
d-separation tests p > 0.05). The model reinforced many
of the conclusions we drew from previous analyses.
Although there was strong evidence that species richness
increased both aboveground woody and soil C
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F I GURE 3 Soil C accumulation and % mass of macroaggregates versus plot types. Plots planted with broadleaf angiosperms had

significantly higher fractions of macroaggregates than those with solely needle-leaf conifers. Plots with Quercus sp. (n = 4 species, 12 plots)

versus Pinus sp. (n = 3 species, 9 plots) followed a similar trend. Soil C accumulation over the course of the experiment did not differ

significantly by leaf type or genus. Plots with differing mycorrhizal types (arbuscular mycorrhizal [AM] vs. ectomycorrhizal [EcM]) did not

significantly vary in percentage of macroaggregates, but did vary in C accumulation. Plots with AM trees or both mycotypes tended to

accumulate more soil C than EcM plots though this trend was not significant in pairwise comparisons. Analyses of macroaggregate fractions

included block as a random effect, and different shapes here are based on the block a plot is located in.
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accumulation, there was no evidence that aboveground
woody C influenced soil C accumulation. As a result, the
influence of species richness on soil C was direct relative
to other variables in the model. As expected given the
high productivity of needle-leaf conifer species, %Conifer
had a strong positive influence on aboveground woody
C. Both aboveground woody C and soil C accumulation
were influenced by %AM, but in opposite directions—
aboveground woody C decreased with the presence of
more slowly growing AM species, while rates of soil C
accumulation increased. Lastly, much of the variation
in macroaggregates was explained by the block
random effect, but they were also negatively correlated
with %Conifer. There was no evidence that macroaggre-
gates contributed to soil C accumulation.

DISCUSSION

There have been recent calls to plant forests to increase
ecosystem C sequestration (Bastin et al., 2019), and to
diversify these planted forests to ensure their resilience
and multifunctionality (Liu et al., 2018; Messier
et al., 2022). However, it remains highly uncertain how
tree diversity affects whole-ecosystem C balance,

particularly during the early years of afforestation (Mayer
et al., 2020). Only a handful of experimental studies have
reported changes in soil C in relation to biodiversity dur-
ing the early stages of afforestation (Table 2), a critical
period when large quantities of soil C may be lost from
the system (Deng et al., 2014; Potvin et al., 2011; Yanai
et al., 2003). We detected positive effects of biodiversity
on both above- and belowground C pools after only
6 years of planting in a low C soil. Critically, net gains in
aboveground woody C were completely uncorrelated to
gains in mineral soil C (Figure 1a). Thus, our findings
support the idea that different mechanisms underlie spe-
cies diversity effects on above versus belowground C in
the early stages of afforestation.

Drivers of aboveground woody C

Aboveground woody C was driven most strongly by spe-
cies identity in the first 6 years after planting. This find-
ing is consistent with results from earlier stages of this
experiment (Grossman et al., 2017; Kothari et al., 2021)
and with strong evidence from global analyses that tree
species vary considerably in their initial growth rates
(Bukoski et al., 2022). Much of the variability could be
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explained by leaf type and phylogeny (Table 1); on aver-
age, needle-leaf conifer plots accrued an order of magni-
tude more aboveground woody C than broadleaf
angiosperm plots. There was also high variability among
broadleaf species, as B. papyrifera accumulated more
than two orders of magnitude more C per plot than the
least productive species, A. negundo. While fitting our
SEM, we also found that the proportion of AM trees
reduced aboveground woody C accrual. This finding
makes sense given that AM monocultures had the lowest
average biomass within leaf types (i.e., Acer spp. among
broadleaf angiosperms, J. virginiana among needle-leaf
conifers), although it is not clear how well it would gen-
eralize to more diverse sets of AM species.

We partitioned the effects of diversity from species
composition on aboveground woody C by calculating
NBE. During the first three growing seasons of FAB1,
Grossman et al. (2017) found that, on average, mixtures
showed positive NBE, with positive complementarity and
nonsignificant selection effects; 4 years later, these results
still held. These findings imply that species tended to
overperform in mixtures regardless of their monoculture
productivity. Complementarity effects can emerge from
many mutually inclusive mechanisms (Barry et al., 2019).
In this experiment, past research showed that large
needle-leaf conifers benefited shade-tolerant broadleaf spe-
cies by ameliorating abiotic stress associated with high
light (Kothari et al., 2021), while evidence for dilution of
natural enemies was more variable (Grossman, Cavender-
Bares, et al., 2019). Despite the dominant influence of fast-
growing conifers on aboveground woody C, there is evi-
dence that interactions in diverse communities produce
synergistic effects.

If the strong influence of species identity results from
fitness differences due to varying environmental toler-
ances, it may persist through time. However, if faster
growth comes at the cost of higher mortality (Wright
et al., 2010) or if canopy closure causes growth to stag-
nate, the vast gaps between the species may shrink and
other factors may become more salient, including rich-
ness. Indeed, positive richness effects often strengthen
through the initial years of stand development (Feng
et al., 2022; Guerrero-Ramírez et al., 2017; Urgoiti
et al., 2022). Nevertheless, slow-growing species may con-
tinue to be less efficient at using resources, which could
explain why transgressive overyielding—in which some
mixtures outperform the best-performing monoculture—
remains rare in forested ecosystems (Chisholm &
Gupta, 2023). If diversity does have benefits, they may
have more to do with resilience and multifunctionality
than simply maximizing potential aboveground woody C
sequestration (Messier et al., 2022). Long-term monitor-
ing will be needed to evaluate how tree identity and
diversity effects shift through time.

Drivers of belowground C

While aboveground woody C gains were well explained
by tree species growth rates, patterns in belowground C
accumulation were less clear due to multiple competing
drivers. We found statistically significant effects of species
richness and mycotype on mineral soil C accumulation
after only 6 years, but these factors only explained a small
amount of the total variation in soil C change. This is per-
haps not surprising, as soil C accumulation depends on

μm

F I GURE 5 Structural equation model depicting the effects of planted tree composition (species richness, mycorrhizal type, and leaf

type, in gray boxes) on C accumulation in soil and aboveground woody biomass, and soil aggregate formation. Solid lines denote statistical

significance (p < 0.05). Red lines indicate a negative effect. All coefficients are standardized. AM, arbuscular mycorrhizal.
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multiple interacting drivers, including the quantity and
quality of plant C inputs, as well as the many biophysical
factors governing decomposition rates. What is surprising
is that soil C increases were not correlated with increases
in aboveground woody biomass, even though both were
influenced by species richness.

While we did not directly measure litter inputs,
aboveground woody biomass varied by more than
400-fold in 2019, suggesting that these plots experienced
a wide range in litterfall C fluxes. The ratio of leaf to

aboveground tree biomass varies by growth form and
stage (range in needle-leaf saplings = ~0.31–0.08, range
in broadleaf saplings = ~0.18–0.03; Jenkins et al., 2003)
and our needle-leaf conifer species likely experienced
longer leaf longevity (~2–3 years; Reich et al., 1999).
However, even a conservative calculation using these
parameters suggests that litterfall C flux varied by at least
one order of magnitude across these plots. This strongly
suggests that differences in the quantity of litter C inputs
were not the dominant factor determining mineral soil C

TAB L E 2 Results of experiments examining tree biodiversity and soil C across multiple richness levels in early stages of afforestation.

Site Study
Impact of richness

on soil C
Time since
planting Soil Climate No. spp.

La Selva, Costa Rica Carney & Matson, 2006 Increased C
concentrations in
three-species plots

9–11 years Fluventic
Dystropept
(Cambisol)

Tropical 1, 3, 5

Sardinilla, Panama Potvin et al., 2011 No clear effect 8 years Alfisols (Luvisols,
Nitisols, or Podzols)

Tropical 1, 3, 6

China Jiang et al., 2010 No effect 17 years Ferralsols Subtropical 1, 2, 3

BEF-China, China Beugnon et al., 2023;
Li et al., 2019

Increased soil C
concentration and
pools at all 0–20 cm
depths after 6 years in
a subset of plots; no
effect on soil C
concentration in 0–
10 cm after 9 years

9 years Cambisols Subtropical 1, 2, 4, 8, 16

Kaltenborn, Germany Domisch et al., 2015 Increased C
concentrations in top
10 cm of mineral soil,
but not other layers

8 years Arenosols Temperate 1, 2, 3, 4

BangorDIVERSE, UK Gunina et al., 2017 No clear effect 10 years Eutric Fluvic
Cambisols

Temperate 1, 2, 3

Zedelgem, Belgium Hicks et al., 2018 No effect 7 years Podzols and
Gleysols

Temperate 1, 2, 3, 4

IDENT-Montréal,
Canada

Martin-Guay et al., 2022 No effect 10 years Humic Gleysol Temperate 1, 2, 4

Italy Palandrani &
Alberti, 2020

No effect 19 years Alluvial mesic
Udifluvent
(Fluvisol)

Temperate 3, 4, 6, 7, 8, 9

IDENT-SSM, Canada Strukelj et al., 2021 No effect 4 years Eutric Arenosols Temperate 1, 2, 4

ORPHEE, France Fanin et al., 2022;
Strukelj et al., 2021

Increased soil C pools
especially at 15-30 cm
depth, but depended
on water

9 and 10 years Entic Ortsteinic
Podzol

Temperate 1, 2, 3

FAB1, USA This study Increased C pools in
top 20 cm of mineral
soil

6 years Udipsamments
(Gleysols)

Temperate 1, 2, 5, 12

Satakunta, Finland Domisch et al., 2015 No effect 14 years Podzols Boreal 1, 2, 3, 5

Note: Soils are reported as described in the associated study with the equivalent order in the Food and Agriculture Organization of the United Nations (FAO)
classification system in parentheses if not originally given.
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accumulation in this system. Notably, we observed
greater soil C accumulation in AM-dominated plots,
while we found greater woody C accumulation (and
likely C inputs to soil) in EcM-dominated plots.

Greater mineral soil C accumulation in AM plots is
consistent with observations in temperate forests in the
United States (Craig et al., 2018; Keller et al., 2021; but
see Wu et al., 2022), and has multiple possible mecha-
nisms. One possibility is that EcM fungal demand for
nutrients led to greater soil C decomposition (Terrer
et al., 2021), but we did not observe lower soil C in the
high-biomass (EcM-dominated) plots as might be
expected if faster growth increased decomposition rates.
A second possibility is that AM fungi increased the for-
mation of macroaggregates (Rillig et al., 2002; Rillig
et al., 2015; Wright & Upadhyaya, 1998), which increase
C storage in sandy soils (Six et al., 2004). However, we
did not find higher macroaggregates in soils under AM
trees, perhaps due to the presence of AM grasses and
forbs in EcM plots with low tree biomass (i.e., Quercus
species, Table 1; Grossman, Butterfield, et al., 2019).
Thus, we did not find strong support that EcM-mediated
decomposition effects or AM-mediated soil structure
effects contributed to the pattern of greater C accumula-
tion in AM plots.

The greater C accumulation observed in AM soils
could have been due to differences in microbial transfer
of plant C into soils via microbial residues. AM trees gen-
erally have more labile leaf and root litter (Grossman
et al., 2020; Keller et al. 2019; See et al., 2019), which
may lead to a greater net transfer of C into soil microbial
biomass (Cotrufo et al., 2013). As this microbial C pool
turns over, a portion of the resulting microbial necromass
C may persist as particulate matter for years (Fernandez
et al., 2020), or form stable associations with soil minerals
(c.a. 30% of soil C at this site; DeLancey et al., 2023). Soil
fungal community composition has diverged across
monocultures in this experiment, as has the abundance
of microbial guilds associated with fungal necromass
decomposition (Maillard et al., 2023). Divergence in fun-
gal communities, coupled with our finding that a general
fungal biomarker was the only microbial PLFA corre-
lated with soil C accumulation during our study, high-
lights the need for a better understanding of how fungi
mediate the flow of C between plants and soils (See
et al., 2022; Sokol et al., 2022).

Although we found greater C accumulation under
AM trees, we did not find evidence for greater soil aggre-
gation. Instead, we observed greater soil aggregation in
broadleaf plots than needle-leaf plots, which in this
experiment also corresponds to the phylogenetic division
between conifer and angiosperm lineages. The mecha-
nism for leaf-type effects on aggregate formation is likely

in part microbial (Merino-Martín et al., 2021; Mueller
et al., 2024). In this experiment, Grossman, Butterfield,
et al. (2019) previously found that broadleaf-dominated
plots contained higher abundances of both bacteria and
actinomycetes, which are associated with greater aggre-
gate formation (Forster, 1990; Ren et al., 2022). Similarly,
Deng et al. (2018) found that leaf-type drove differences
in bacterial communities during reforestation (but see
Rożek et al., 2023). Importantly, soil aggregates also var-
ied among blocks, and these pretreatment legacies sup-
port the idea that C occluded in aggregates may have a
longer residence time than free organic matter, but that
aggregates may be slow to form. Still, we were able to
detect effects of leaf-type on aggregate fractions after just
6 years. If these differences in aggregate formation per-
sist, they may eventually cause the mineral soils of broad-
leaf plots to accumulate greater soil C stocks (Deng &
Shangguan, 2017; Laganière et al., 2010).

Finally it is highly likely that differences in the physi-
cal structure of these plots led to microclimatic effects on
decomposition. Plots with higher aboveground woody C
had lower soil moisture. Given this variation, the wetter
soils in slower-growing broadleaf plots likely experienced
higher decomposition rates compared with those with
needle-leaf conifer species (Moyano et al., 2013). Some-
what paradoxically, higher soil moisture was also corre-
lated with more macroaggregates and higher soil C
concentration due to the high water holding capacity of
organic matter, making it difficult to infer causality in
the observed relationships between soil moisture and soil
C across plots. Regardless, microclimatic variation was
strongly mediated by individual species’ growth rates
during these early years of establishment. As the slowest-
growing plots achieve canopy closure, microclimatic vari-
ation may begin to dampen (Zhang et al., 2022), and the
effects of functional group (e.g., mycotype, leaf type) on
soil C may become more salient. Studies on afforesta-
tion’s impacts on C sequestration could benefit from con-
sidering the role of microclimates in mediating the
relationship between biodiversity and ecosystem func-
tioning, especially in the face of climate change
(de Frenne et al., 2021; Wright et al., 2021).

CONCLUSION

Understanding the effects of tree diversity on whole eco-
system C sequestration is necessary for informing effec-
tive reforestation and afforestation strategies. In young
stands, after only 6 years of afforestation, we found evi-
dence for positive diversity effects on aboveground
woody C and mineral soil C accumulation in a planted
tree diversity experiment. Critically, soil C accumulation
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was not directly correlated with the quantity of above-
ground woody C gains, indicating that diversity effects
on soil C were not a function of greater litter inputs
alone. Instead, we found greater increases in soil C in
plots containing AM fungi-associated tree species.
Further, we found that broadleaf species increased soil
aggregation relative to needle-leaf conifers, which may
lead to longer-term C storage if this effect persists
through time. Importantly, our results reflect an experi-
ment in sandy (low C) soils, which allowed for detection
of small changes in soil C pools, but our analyses
explained only a small quantity of the total variation in
soil C accumulation. This highlights the critical need for a
better mechanistic understanding of the effects of planted
tree diversity on rates of belowground C sequestration, as
it has the potential to offset or enhance aboveground
C gains.
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