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Abstract
Measuring the chemical traits of leaf litter is important for understanding plants’ influence on nutrient cycles, including

through nutrient resorption and litter decomposition, but conventional leaf trait measurements are often destructive and
labor-intensive. Here, we develop and evaluate the performance of partial least-squares regression models that use reflectance
spectra of intact or ground leaves to estimate leaf litter traits, including carbon and nitrogen concentration, carbon fractions,
and leaf mass per area (LMA). Our analyses included more than 300 samples of senesced foliage from 11 species of temperate
trees, including both needleleaf and broadleaf species. Across all samples, we could predict each trait with moderate-to-high
accuracy from both intact-leaf litter spectra (validation R2 = 0.543–0.941; %root mean squared error (RMSE) = 7.49–18.5) and
ground-leaf litter spectra (validation R2 = 0.491–0.946; %RMSE = 7.00–19.5). Notably, intact-leaf spectra yielded better predic-
tions of LMA. Our results support the feasibility of building models to estimate multiple chemical traits from leaf litter of a
range of species. In particular, intact-leaf spectral models allow non-destructive trait estimation in a matter of seconds, which
could enable researchers to measure the same leaves over time in studies of nutrient resorption.
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Introduction
Long-lived plants resorb and store a large fraction of the nu-

trients from their leaves before they senesce. These reserves
support early growth in the following growing season and
reduce the need for nutrient uptake from the soil (El Zein
et al. 2011). However, nutrient resorption (much like soil nu-
trient uptake) has metabolic and physiological costs, so the
optimal level of nutrient resorption varies among environ-
ments (Wright and Westoby 2003). Accordingly, plants vary
broadly in their nutrient resorption efficiency——the fraction
of a given nutrient that is resorbed (Vergutz et al. 2012). For
example, plants often (Kobe et al. 2005; Hayes et al. 2014;
Yuan and Chen 2015), though not always (Diehl et al. 2003),
resorb a greater fraction of leaf nutrients when soil nutri-
ents are scarce. This adjustment of resorption efficiency in
response to the environment highlights the key role of re-
sorption in plant nutrient economics.

Resorption often leaves the resulting leaf litter relatively
nutrient-poor, which can limit the rate of decomposition of
newly shed litter by soil microorganisms (Berg 2014). Hence,
nutrient-poor litter decomposes more slowly than nutrient-
rich litter at first (Cornwell et al. 2008), although this trend
can reverse in later stages (Prescott 2010; Berg 2014; Gill et
al. 2021). Because litter nutrient levels influence the nutrient
flux into soil inorganic or microbial pools via decomposition,
resorption may be an important process for explaining how

plants influence their environment (Hobbie 2015). Although
many metabolic changes occur during senescence, fresh-leaf
and leaf litter composition often remain correlated, which
may help explain why soil processes can often be inferred
from remote sensing of aboveground vegetation (Madritch et
al. 2020; Cavender-Bares et al. 2022).

Addressing many ecological questions about nutrient re-
sorption and litter decomposition requires measuring litter
chemistry. Because estimating resorption efficiency requires
knowing the nutrient content of leaves both before and after
senescence, it can be expensive and labor-intensive. Further-
more, because measuring nutrient concentration through el-
emental analysis is destructive, the same exact leaves cannot
be measured at each step. Decomposition also depends on
litter traits beyond macronutrient concentrations, including
lignin, cellulose, condensed tannins, and various micronu-
trients (Schweitzer et al. 2004; Cornwell et al. 2008; Talbot
and Treseder 2012; Keiluweit et al. 2015; Bourget et al. 2023).
The potential number of traits and samples can add up to
make research on leaf litter and nutrient cycling expensive
and time consuming.

The cost and time involved may make it harder to under-
stand and predict the fluxes of carbon and mineral nutrients
between plants, litter, and soil——the determinants of which
are still far from well-understood. For example, large-scale
comparative tests of the role of nutrient resorption in plant
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life history or nutrient economics are still rare (e.g., Freschet
et al. 2010; Rea et al. 2018). Meanwhile, research continues to
reveal new paths through which a plant community’s litter
traits or diversity interact with microbial communities and
the abiotic environment to influence decomposition rates
(Grossman et al. 2020; Liu et al. 2020; Gill et al. 2021; Bourget
et al. 2023). Fast, simple estimates of litter traits could make
it easier both to study the functional significance of nutri-
ent resorption and to estimate litter decomposability rapidly
across taxa and ecosystems.

The need for faster trait estimates has led some plant ecol-
ogists to turn to reflectance spectroscopy, a technique that
involves measuring the reflectance of radiation from a sam-
ple across many wavelengths. Many kinds of samples, includ-
ing leaf tissue, are analyzed using the 400–2400 nm range.
Reflectance in this range can be used to estimate many leaf
structural and chemical traits because those traits influence
how leaves scatter and absorb radiation across wavelengths.

Many widely studied functional traits nevertheless cannot
be identified with unique, distinct absorption features. For
example, the leaf dry matter that contributes to leaf mass
per area (LMA) includes varying fractions of macromolecules
like non-structural carbohydrates, hemicellulose, cellulose,
lignin, and proteins, which have varying, broad, and overlap-
ping optical features (Curran 1989). This challenge is among
the reasons that many plant scientists have adopted a mul-
tivariate empirical approach to linking traits and reflectance
spectra using statistical techniques like partial least-squares
regression (PLSR; Wold 1994; Burnett et al. 2021). The hope
is that these approaches can flexibly “learn” relationships
from actual data rather than assuming that complex traits
have fixed and pre-specified relationships with optical fea-
tures (Curran 1989). Researchers have built PLSR models pre-
dicting traits like LMA and nitrogen concentration with a
high degree of accuracy from reflectance spectra, measured
either while the leaf was fresh or after drying and grinding it
into powder (Serbin et al. 2014, 2019; Kothari et al. 2023a,
2023b). Further research has shown that spectral models can
predict traits as varied as defense compounds (Couture et al.
2016), water status (Asner et al. 2011; Cotrozzi et al. 2017;
Kothari et al. 2023a), leaf age (Chavana-Bryant et al. 2017),
and photosynthetic capacity (Dechant et al. 2017).

The vast majority of this research is based only on mea-
surements taken during the growing season, before the on-
set of leaf senescence. These models are not expected to ac-
curately predict the traits of senesced leaves, which have
undergone metabolic and physical changes that alter their
chemical composition and spectra, bringing them well out-
side typical ranges observed in fresh green leaves (Gillon et
al. 1999a). Some researchers have built models to predict
decomposition-related traits (Joffre et al. 1992; McTiernan et
al. 2003; Coûteaux et al. 2005; Hobbie 2005; Parsons et al.
2011; Petit Bon et al. 2020) or the decomposition rate itself
(Gillon et al. 1999b; Fortunel et al. 2009; Parsons et al. 2011)
from ground-leaf litter using near-infrared (NIR) reflectance
spectroscopy. Many traits that influence decomposition also
influence forage quality, and there is an extensive body of
research predicting forage traits using NIR spectroscopy, in-
cluding in senescent foliage (e.g., Norris et al. 1976). Such

studies have often shown high accuracy (R2 > 0.9) in pre-
dicting traits like Nmass, carbon fractions, and phenolics, al-
though these models have usually been calibrated using a
limited number (<120) of samples from one or a few species.

Here, we expand on prior work by building models to pre-
dict traits related to litter quality and recalcitrance from
reflectance spectra. Compared to previous studies, we cali-
brate and validate our models using more samples from more
species. This breadth allows us to make predictions over a
wide range of trait values and test how well models pre-
dict both intra- and interspecific trait variation. We also mea-
sured spectra from the same samples both while intact and
ground. Existing models to predict leaf litter traits require the
destructive and time-consuming step of grinding the tissue,
which motivated us to test whether spectra of whole, intact
litter could also yield accurate estimates. We predicted that
ground-leaf litter spectra would provide more accurate esti-
mates of chemical traits than intact-leaf litter spectra, as most
comparisons on non-senesced leaves have shown (Serbin et
al. 2014; Couture et al. 2016; Kothari et al. 2023b). On the
other hand, we predicted that intact-leaf litter spectra would
outperform ground-leaf litter spectra for estimating struc-
tural traits like LMA because grinding destroys the leaf struc-
ture (Kothari et al. 2023b).

Finally, we verified whether our litter chemistry estimates
could capture known differences among functional groups.
We predicted that conifer litter would have greater LMA, re-
calcitrant carbon, and Cmass and lower Nmass than broadleaf
litter. These patterns are thought to explain much of why
conifer litter tends to show slower initial decomposition rates
than broadleaf litter (Cornelissen et al. 1999; Cornwell et al.
2008; Prescott 2010).

Methods

Samples
During fall 2018, we collected senescent leaf litter from the

Forests and Biodiversity (FAB1) experiment at Cedar Creek
Ecosystem Science Reserve (East Bethel, MN, USA; Grossman
et al. 2017). In May 2013, one- to two-year-old trees were
planted in a 0.5 m × 0.5 m grid within plots that varied in
their species richness (1, 2, 5, or 12 species) and composi-
tion. The species pool included eight broadleaf angiosperms
and four needleleaf conifers (Table 1). We left out one species
(Juniperus virginiana) from sampling because its scaly needle
morphology meant that individual trees seldom produced
enough litter at once for spectroscopic or chemical analyses.
To get enough samples of another species (Acer negundo), we
also collected material from mature trees in a residential yard
in Minneapolis, MN, USA, 50.0 km from FAB1.

We collected litter samples as close as we feasibly could
to the time of senescence using both litterfall traps on the
ground and hand-collection of senesced leaves from trees. We
only took leaves from trees when the petiole had a complete
abscission layer and the leaf could be detached with a gentle
pull (Chapin and Moilanen 1991). Because species dropped
their leaves at different times, we collected litter repeatedly
from September to November 2018 to ensure that the litter
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Table 1. Details of species in the Forests and Biodiversity (FAB1) experiment.

Species Code
Functional

group
No. of

samples

Acer negundo L. ACNE Broadleaf 27

Acer rubrum L. ACRU Broadleaf 28

Betula papyrifera Marshall BEPA Broadleaf 36

Juniperus virginiana L. JUVI Needleleaf n/a

Pinus banksiana Lamb. PIBA Needleleaf 20

Pinus resinosa Aiton PIRE Needleleaf 31

Pinus strobus L. PIST Needleleaf 26

Quercus alba L. QUAL Broadleaf 37

Quercus ellipsoidalis E.J. Hill QUEL Broadleaf 33

Quercus macrocarpa Michx. QUMA Broadleaf 34

Quercus rubra L. QURU Broadleaf 33

Tilia americana L. TIAM Broadleaf 17

Total 322

Note: All broadleaf species listed are deciduous angiosperms, and all needleleaf species are evergreen conifers.
We did not sample Juniperus virginiana. Twelve of the Acer negundo samples come from a residential yard rather
than FAB1. One Betula papyrifera sample included in the tally was omitted from ground litter analyses due to
lack of tissue.

we collected had recently senesced. To avoid influence from
leaching we discarded litter samples from traps after rain,
although nitrogen and carbon leaching tends to be low even
under extreme wetting (Schreeg et al. 2013).

We collected 322 litter samples, seeking to represent the
variation in leaf traits within each species (n = 17–37 per
species; Table 1). While our sampling did not explicitly ac-
count for the species richness and composition treatments
in FAB1, we collected leaves from each species across neigh-
borhoods and crown positions to enhance intraspecific vari-
ation. In some cases, we selected multiple leaves from dis-
tinct crown positions on the same tree. Each sample included
1.5–3.0 g of tissue and could comprise one leaf or multi-
ple similar leaves. When a single trap contained more than
2.5–3.0 g of leaves from a single species, we divided them
into two or more samples by keeping together leaves that
we judged by eye to be more visually similar. We dried each
sample in a dark shed at 40 ◦C for at least 3 days, and then
stored them in a cool, dark room until spectral and trait
measurements.

Spectral data collection
We measured reflectance spectra of each dried sample

using a PSR+ 3500 full-range (350–2500 nm) spectrometer
(Spectral Evolution, Lawrence, MA, USA). Each sample’s spec-
trum was measured both in its intact state and after grinding.
For intact-leaf spectra, we used the Spectral Evolution leaf
clip assembly. This leaf clip covers a surface area of around
1 cm2 and has an angle of incidence of 30◦ from surface
normal. We used a built-in 99% Spectralon white reflectance
standard to calibrate readings before each sample. Among
broadleaf species, we always measured the adaxial side; many
leaves curled in on themselves during senescence and dry-
ing, but we sought to measure spectra in relatively flat por-
tions of the leaf to minimize specular reflection (Petibon et al.
2021). Among needleleaf species, we made mats by laying out

needles in a single layer; although we aimed to reduce gaps
or areas of overlap between needles, there usually remained
some due to their shape. On each sample, we measured mul-
tiple spectra from distinct places. We discarded spectral mea-
surements with large discrepancies in sensor overlap regions,
or (particularly for needleleaf species) with very high (>70%)
or very low (<30%) maximum reflectance, which often indi-
cated that the needle mat was highly non-uniform. There re-
mained at least three reflectance spectra for nearly all sam-
ples. (For five conifer samples, we retained only two replicate
spectra due to challenges in obtaining good measurements.)
For some broadleaf samples comprising many small leaves,
we measured more than 10 spectra to capture a representa-
tive sample.

After removing their petioles, we ground leaf samples by
placing them in individual plastic vials with ball bearings
and shaking them with a paint shaker for several hours, pul-
verizing them into a fine powder. To measure ground-leaf
spectra, we used the Spectral Evolution benchtop reflectance
probe and glass-windowed sample trays. Before measuring
each sample, we measured a white Spectralon panel placed in
a sample tray for calibration. For sample measurements, we
put at least 0.6 g of leaf powder into a sample tray. Prelimi-
nary tests showed that adding more material did not change
the spectra, suggesting that transmittance was close to zero.
The benchtop probe pressed the loose powder into an even
pellet. We measured three spectra per sample——turning the
sample tray 120◦ between the first two measurements, and
loosening and mixing the powder between the second and
third measurements.

The spectrometer automatically interpolated the spectra to
1 nm resolution. We performed all subsequent processing us-
ing spectrolab v. 0.0.18 (Meireles et al. 2023) in R v. 4.2.1 (R Core
Team 2022). Because the 2400–2500 nm and especially the
350–400 nm region could be noisy (Petibon et al. 2021), we
trimmed each spectrum to 400–2400 nm. For intact leaves
only, we corrected discontinuities at the overlap region be-
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tween the Si and first InGaAs detectors (970–1000 nm) using
the match_sensors function, and spline-smoothed only this re-
gion using the smooth_spline function. Finally, we averaged all
intact spectra and all ground spectra for a given sample. As a
metric of measurement consistency, we calculated the mean
spectral angle between measurements of the same sample
(Kruse et al. 1993). Intact measurements (median across sam-
ples: 6.8◦; 2.5th–97.5th percentile: 2.9◦–20.4◦) showed much
less consistency than ground measurements (median: 0.6◦;
2.5th–97.5th percentile: 0.2◦–3.2◦).

Trait measurements
We measured a relatively simple set of leaf litter traits that

are useful for understanding plants’ influence on nutrient
cycles: soluble contents, hemicellulose, recalcitrant carbon
(largely cellulose and lignin), total carbon and nitrogen con-
centrations, and LMA. Most of these traits have a demon-
strated role in explaining decomposition rates across sites
(Cornwell et al. 2008), although we acknowledge that decom-
position is a complex, dynamic process that can be influenced
by many other traits. Both nitrogen concentration and LMA
are also essential for quantifying nitrogen resorption.

Leaf mass per area

Researchers risk underestimating resorption efficiency
when they fail to account for leaf mass loss during resorp-
tion. To avoid this risk, many studies either express nutrient
content of non-senesced and senesced leaves on a per-area
basis, or equivalently include a mass loss correction factor
(van Heerwaarden et al. 2003). We measured LMA of each lit-
ter sample to enable conversion between a per-mass and per-
area basis. We did not attempt to quantify or correct for the
smaller bias sometimes caused by leaf shrinkage (van Heer-
waarden et al. 2003).

For broadleaf species, we could not measure the area of
whole leaves because many were curled and brittle. Instead,
we used a hole punch to take four to six 0.3 cm2 disks from
each dried leaf sample. We sought to capture the variation
within the sample, including veins. We calculated LMA as the
total mass divided by the total area of all disks. This method
has generally been shown to provide accurate estimates of
the LMA of whole leaves (Perez et al. 2020).

For needleleaf species, we measured the mass and area of
five needles per sample. We estimated area as the length
times the maximum width of the needle measured using
digital calipers. We then measured the mass of each needle
and calculated LMA as the total mass divided by the total
area.

Chemical traits

We measured leaf carbon and nitrogen concentration
(Cmass and Nmass) on ground, oven-dried samples using dry
combustion gas chromatography performed by an elemen-
tal analyzer (Costech ECS 4010 Analyzer, Valencia, California,
USA). We converted Cmass and Nmass to an area basis (Carea and
Narea) by multiplying them with LMA. We only trained mod-

els for these area-based traits from intact-leaf spectra. We had
noticed that models for LMA trained on ground-leaf spectra
showed poorer performance than those trained on intact-leaf
spectra, especially at capturing intraspecific variation (“Re-
sults” section); as a result, we decided that it would be im-
prudent to estimate other traits defined on an area-basis from
intact-leaf spectra.

We measured carbon fractions on ground, oven-dried sam-
ples using an ANKOM 200 Fiber Analyzer to carry out a se-
quential digestion protocol (Ankom Technology, Macedon,
New York, USA). The first digestion in a hot neutral deter-
gent solution washes out plant solubles. The second digestion
in a hot acidic detergent solution further washes out bound
proteins and hemicellulose (henceforth “hemicellulose” for
simplicity). The remaining fraction comprises cellulose and
acid-unhydrolyzable residue (AUR) such as lignin (henceforth
“recalcitrant carbon”). We estimated each component using
the changes in sample mass between steps. Because the paint
shaker ground our samples into a very fine powder, we had
to use small-pored ANKOM F58 fiber bags, which cannot be
used in the final acid detergent lignin digestion to measure
AUR concentration alone. We also did not determine the ash
concentration of the samples.

We removed some trait values prior to statistical analy-
ses because of clear issues during trait data collection——for
example, the rupture of sample bags while measuring car-
bon fractions. Unlike some other studies (e.g., Gillon et al.
1999b), we only removed samples due to known issues with
trait measurements, not simply because they had large pre-
diction residuals during statistical analyses.

Partial least-squares regression analyses
We modeled the relationship between traits and spectra

using PLSR, which is well suited to handle datasets that in-
clude many collinear predictors (Wold 1994; Burnett et al.
2021). PLSR reduces the full samples × wavelengths matrix
to a smaller number of orthogonal latent components that
best explain the variation in the variables to be predicted. We
implemented our PLSR models in R package pls v. 2.8.3 (Mevik
et al. 2019).

Previous studies using a PLSR modeling framework have
often restricted the range of wavelengths used to predict cer-
tain traits to select bands that, based on prior research or
known absorption features, may be most causally linked to
the traits in question (e.g., Serbin et al. 2014). In our main
set of analyses, we used the full spectrum (400–2400 nm) to
predict each trait on the grounds that biochemical changes
during senescence may alter the relationship between inte-
grative functional traits like Nmass and specific optical fea-
tures. However, we also explored two ways of restricting
the spectral range for intact-leaf spectra only. First, we built
models using only 400–1000 nm (“visible/near infrared range
(VIS/NIR) models”) given that many less-expensive spectrom-
eters only measure this range. Second, we built models using
only 1300–2400 nm (“short-wave infrared range (SWIR) mod-
els”) since the pigment composition of leaves changes rapidly
during senescence, including breakdown products (“brown
pigments”) that may absorb up to 1300 nm (Fourty et al.
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1996). The SWIR models could perform better in cases where
pigments are poor indicators of the overall composition of
the leaf.

Researchers may transform reflectance of ground-leaf spec-
tra to pseudoabsorbance (−log R) or its derivatives (Blackburn
1998; Reeves 2009), which may somewhat linearize the rela-
tionship between traits and spectral features and make those
features more prominent. We found in preliminary tests that
these transformations did not substantially improve model
performance. Likewise, brightness normalization of intact-
leaf spectra (Feilhauer et al. 2010) did not have a strong in-
fluence on model performance.

We divided our samples into calibration (75%) and valida-
tion (25%) datasets, stratified such that the proportions of
each species were identical in each dataset. We fit models
for each trait on the complete calibration dataset, using 10-
fold cross-validation to select the optimal number of model
components to use in further analyses while avoiding overfit-
ting. We selected the smallest number of components whose
cross-validation root mean squared error of prediction (RM-
SEP) was within one standard deviation of the very lowest
RMSEP at any number of components. We used these mod-
els to calculate the variable importance in projection metric
(VIP) for each trait (Wold 1994) but we do not report their
accuracy.

We developed our main set of models using a resampling
procedure in which we divided the calibration data at ran-
dom 200 times into 70% training and 30% testing subsets
(Burnett et al. 2021). During each resampling iteration, we
trained a model for each trait on the 70% and assessed its
performance (RMSE and R2) on the remaining 30%, using the
previously determined number of components for that trait.
This procedure left us with an ensemble of 200 models for
each trait, which could be used both to make trait predic-
tions and to examine the variability of model performance
under random variation in training data.

We used these ensembles of models to predict traits from
the validation (25%) dataset. We quantified model perfor-
mance for each trait by calculating R2 and root mean squared
error (RMSE) between the predictions (averaged for each val-
idation sample across the 200 estimates) and the measured
values. We also report the %RMSE, calculated as the RMSE di-
vided by the 2.5% trimmed range of the measured values in
the validation data (Kothari et al. 2023a). This metric allows
the amount of error in trait estimates to be assessed relative
to the actual range of variation.

Spectral indices of pigment contents
Since our analyses of spectral variation and VIP (“Results”

section) suggested that wavelengths sensitive to pigment con-
tents were important for predicting several traits in both full-
range and VIS/NIR models, we calculated two spectral indices
used to assess pigment status in senescing leaves. The first
is the plant senescence reflectance index (PSRI) of Merzlyak
et al. (1999), calculated as PSRI = (R678 – R500)/R750, where Rn

is the reflectance at n nm. This index correlates positively
with carotenoid : chlorophyll ratios, which increase during
leaf senescence because chlorophyll degrades sooner than

carotenoids. The other index is the red-edge chlorophyll in-
dex (CIRE) of Gitelson et al. (2009), calculated as CIRE = ρNIR/ρRE

– 1, where ρNIR is the mean reflectance across 760–800 nm
(part of the NIR range) and ρRE is the mean reflectance across
690–710 nm (part of the red edge). This index is closely linked
to chlorophyll content. We used Analyses of covariance (AN-
COVA) with Type III sums of squares to test whether these
indices, species identity, and their interaction are related to
traits, with the aim of evaluating the main effect of the in-
dices. We ran analyses separately for the two indices and
for intact- and ground-leaf spectra, and focused on two traits
(Nmass and recalcitrant carbon) for the purpose of demonstra-
tion. In particular, leaf nitrogen and chlorophyll are often
tightly correlated in fresh leaves, although the strength and
slope of this correlation varies by species and growing condi-
tions (Dechant et al. 2017).

Results
There was a high level of variation in each trait both across

the entire dataset and within species. At one extreme, Nmass

varied nearly 11-fold across the entire dataset; at the other,
Cmass only varied about 1.5-fold (Table 2). In spite of the high
intraspecific variation in some traits, linear regressions of
traits against species identity showed that between 46.0% (R2

for Narea) and 93.7% (R2 for LMA) of trait variation could be
explained by species identity alone. In general, needleleaf
species had much higher LMA, Cmass, recalcitrant carbon, and
lower Nmass than broadleaf species (Table S1), consistent with
trends in non-senescent leaves (Serbin et al. 2014; Kothari
et al. 2023a). Consequently, we see correlations among pairs
of litter economic traits (sensu Freschet et al. 2012) across
the whole dataset (for log(LMA) and log(Nmass), R2 = 0.592;
p < 10−15), but a weaker correlation among just needleleaf
samples (R2 = 0.255; p < 10−5) and none among just broadleaf
samples (R2 = 0.011; p = 0.111).

Among both ground-leaf and intact-leaf spectra, the coef-
ficient of variation (CV) was highest in the visible range and
decreased into the NIR range (Fig. 1). For intact-leaf spectra
only, the CV once again increased into the SWIR. There was a
global maximum CV around 440–490 nm for intact spectra,
shifted to lower wavelengths for ground spectra; there were
also local maxima centered at around 670–675 nm for both
kinds of spectra.

Each of our traits could be predicted with moderate-to-high
success from full intact-leaf and ground-leaf spectra (Figs. 2–
4; Table 2). The models for Nmass and (especially for intact-
leaf spectra) LMA achieved the highest validation accuracy,
followed by recalcitrant carbon, solubles, Cmass, and finally
hemicellulose (Table 2). There was no general tendency for
estimation of chemical traits to be better using intact- or
ground-leaf spectra, but estimation of LMA was better us-
ing intact-leaf spectra. We built models predicting Narea and
Carea only from intact-leaf spectra (Fig. 4). The Carea model
(%RMSE = 8.02) had better performance than the Cmass model
(%RMSE = 14.0), but the Narea model (%RMSE = 13.2) had
worse performance than the Nmass model (%RMSE = 8.58;
Table 2). Jackknife analyses showed that traits for which the
ensemble model performance was poorest——such as hemicel-
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Table 2. Summary statistics of partial least-squares regression model validation based on full (400–2400 nm) intact- and ground-
leaf spectra.

Intact Ground

Litter trait Range No. comps R2 RMSE %RMSE No. comps R2 RMSE %RMSE

Cmass (%) 40.9–61.4 12 0.764 1.82 14.0 12 0.689 2.11 16.3

Nmass (%) 0.24–2.57 15 0.919 0.136 8.58 19 0.946 0.111 7.00

LMA (g m−1) 39.5–282 11 0.941 15.3 7.49 13 0.842 25.5 12.5

Solubles (%) 27.6–71.4 10 0.794 4.43 14.0 11 0.808 4.33 13.7

Hemicellulose (%) 5.72–26.0 8 0.543 2.79 18.5 8 0.491 2.94 19.5

Recalcitrant carbon (%) 20.7–58.7 11 0.881 2.96 10.0 13 0.887 3.03 10.2

Carea (g m−1) 16.2–172 10 0.940 9.20 8.02

Narea (g m−1) 0.272–2.43 12 0.766 0.188 13.2

Note: The range column shows the complete trait range across the full dataset. %root mean squared error (RMSE) is calculated as RMSE divided by the 2.5% trimmed
range of data within the validation data set. LMA, leaf mass per area.

Fig. 1. Distributions of spectral reflectance and its coefficient of variation (CV) among intact (left) and ground (right) leaf litter
samples. The black line represents the median reflectance at each wavelength, flanked by the 25–75 percentile region (dark
blue), and the 2.5–97.5 percentile region (light blue). The solid red line shows the coefficient of variation among spectra at
each wavelength.
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lulose, Cmass, and Narea——also had the greatest variability in
model performance (Figs. S1 and S2).

For every trait prediction model trained on the full spec-
trum, the VIP metric also showed a global maximum around
677 nm (intact) or 672 nm (ground; Fig. 5), next to one of
the aforementioned chlorophyll absorption peaks. This pat-
tern suggests that the amount of chlorophyll remaining at
abscission may be closely related to many traits. More gener-
ally, the visible range was most important for predicting all
traits, and the NIR range was also important for LMA. There
were further local optima in the SWIR around 1430–1450 nm
(for intact leaves), 1910–1950 nm, and 2130–2220 nm. In fresh
tissue, variation in reflectance around 1910–1950 nm is often
interpreted as a measure of absorption by water, but the trace
amounts of water remaining in our dried samples likely have
no direct biological relevance. In general, reflectance in the
visible range and parts of the SWIR range seemed most infor-
mative for predicting nutrients and carbon fractions in litter.

Our VIS/NIR models for intact leaves had considerably
worse performance than our full-range models for every trait,
particularly Nmass, Narea, and solubles. By contrast, our SWIR
models had very similar performance to the full-range mod-
els (Table S2). Both sets of restricted-range models had a simi-
lar rank-ordering of model performance across traits to each

other and the full models. Moreover, the VIP metric for these
models revealed that the regions that were most important
for these predictions were mainly the same bands in their re-
spective regions that were important for the full-range mod-
els; however, for the VIS/NIR models, very low wavelengths
close to 400 nm also had high importance (Figs. S3–4).

The fact that the CV of intact spectra had maxima at 440–
490 and 670–675 nm, and that VIP for many traits had global
maxima at 670–680 nm, led us to consider the role of chloro-
phyll degradation in explaining our ability to predict traits.
Both maxima of the CV lie near (but not in the center of)
absorption peaks of chlorophylls, and reflectance around
670 nm is particularly sensitive to variation in chlorophyll
at low levels, such as during late senescence (Merzlyak et al.
1999). We used two indices, the PSRI and CIRE, to test whether
the pigment status of the intact and ground leaves remained
informative about other leaf traits. Within species, lower
PSRI and higher CIRE were associated with greater Nmass, and
higher CIRE was also associated with more recalcitrant car-
bon; these trends were consistent across intact- and ground-
leaf spectra (Figs. S5–6). For each of these comparisons, the
ANCOVAs confirmed the main effect of the pigment index
(p < 0.001 in all cases) and of species (p < 0.001 in all cases), as
well as an interaction (p < 0.05 in all cases). Although inter-
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Fig. 2. Validation results for predictions of solubles, hemicellulose, and recalcitrant carbon from intact-leaf litter spectra (left)
and ground-leaf litter spectra (right). In each panel, a thick red line represents the ordinary least squares (OLS) regression fit
across the full dataset, while thin colored lines represent each of the 11 species. The thick black dashed line is the 1:1 line. The
error bars for each data point are 95% intervals calculated from the distribution of predictions based on the model coefficients
from the 200 jackknife iterations. See Table 1 for species codes. RMSE, root mean squared error.

actions can make it hard to interpret main effects, the plots
make it clear that slopes generally had consistent directions
across species (Figs. S5–6). In some cases, however, trends
across the full dataset diverged from species-specific trends.
For example, while intact-leaf CIRE was positively correlated
with recalcitrant carbon within species, it was weakly nega-
tively correlated across species (t(314) = −4.34; R2 = 0.053;
p < 0.001).

Discussion
We show that PLSR models trained on reflectance spectra

can accurately predict several leaf litter traits related to nu-
trient cycling across temperate broadleaf and needleleaf tree
species. For each trait, a single model captures the variation
among and within our 11 species. The models’ predictions

capture well-known ecological differences among functional
groups——for example, that needleleaf species have more re-
calcitrant carbon and lower Nmass than broadleaf species. Im-
portantly, intact-leaf models are about as accurate as ground-
leaf models for most traits, which suggests that multiple
traits can be estimated from a single measurement that takes
only seconds.

Model performance and interpretation
The hierarchy of which traits can be predicted best mir-

rors results from non-senesced leaves, including fresh ones
(Asner et al. 2011; Nunes et al. 2017; Kothari et al. 2023a).
LMA can be predicted very well from intact-leaf spectra in
particular, which has been shown in both fresh leaves (Serbin
et al. 2019) and in pressed, dried leaves (Costa et al. 2018;
Kothari et al. 2023b). Predictions of LMA from ground leaves
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Fig. 3. Validation results for predictions of Cmass, Nmass, and leaf mass per area (LMA) from intact-leaf litter spectra (left) and
ground-leaf litter spectra (right). Regression lines and error bars are as in Fig. 2. See Table 1 for species codes. RMSE, root mean
squared error.

are worse, but still quite good (Serbin et al. 2014). Nmass can
also be predicted nearly perfectly from intact- and ground-
leaf spectra (Richardson and Reeves 2005; Serbin et al. 2014).
Recalcitrant carbon, solubles, and Cmass all can be predicted
with R2 > 0.65, while the smallest carbon fraction (hemicel-
lulose) shows the worst performance (Kothari et al. 2023b).
For chemical traits, intact- and ground-leaf models had only
small and idiosyncratic differences in performance.

Our comparisons of variation among replicate spectral
measurements within samples imply that grinding homog-
enizes the variation in the leaf and allows more consistent
measurements. This consistency may owe to several factors.
Veins and other features cause intact leaves to vary in their
chemical makeup across the laminar area, which may be
hard to capture representatively. Likewise, if chemical traits
change with depth through the laminar cross-section, the
optical features of deeper layers may be obscured in part
by shallower layers. The geometries of uneven needle mats

and curled-up leaves may also reduce consistency by increas-
ing variation in anisotropic surface reflectance (Petibon et
al. 2021). Nevertheless, there was no strong, consistent in-
dication that ground-leaf spectra are necessarily better than
intact-leaf spectra for predicting chemical traits. This result
deviates from the few previous comparisons of intact- and
ground-leaf spectra (Serbin et al. 2014; Couture et al. 2016;
Kothari et al. 2023b). It is unclear why the theoretical con-
siderations in favor of ground-leaf spectra do not amount to
much in practice here; we speculate that information about
structure might, depending on the context, either confound
or indirectly aid the prediction of chemical traits.

In contrast to chemical traits, LMA was clearly better pre-
dicted from intact-leaf spectra. Given that grinding destroys
the leaf structure, it may be perplexing that ground-leaf spec-
tra predict structural traits like LMA at all (Serbin et al. 2014;
Kothari et al. 2023b). The relationship between ground-leaf
spectra and LMA is likely indirect——mediated through corre-
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Fig. 4. Validation results for predictions of Carea and Narea

from intact-leaf litter spectra. Regression lines and error bars
are as in Fig. 2. See Table 1 for species codes. RMSE, root mean
squared error.

lations between LMA and chemical traits that retain clear op-
tical signatures in ground tissue (Nunes et al. 2017). When
a model is dependent on this kind of mediation by trait
correlations, it may be risky to transfer it to novel settings
where the structure of trait correlations may not be the same
(Kothari and Schweiger 2022). For example, since trait rela-
tionships among species often differ in strength and slope
from those within species (Anderegg et al. 2018), a model
trained across many species may not accurately capture in-
traspecific variation (Kothari and Schweiger 2022). Indeed,
we found that ground-leaf spectra do a poor job of predicting
intraspecific variation in LMA (Fig. 2). Likewise, the relation-
ship between the chlorophyll index CIRE and recalcitrant car-
bon switches direction between intra- and interspecific scales
(Fig. S6).

Changing the basis of nitrogen and carbon from mass to
area also changes the accuracy of estimates. While Nmass

is predicted more accurately than Narea, Cmass is predicted
less accurately than Carea. Across samples, Nmass correlates
negatively and Cmass correlates positively with LMA, driven
in large part by the split between broadleaf (low LMA) and
needleleaf (high LMA) species. As a result, multiplying by
LMA to convert N and C to an area basis flattens interspe-
cific variation in N, but enhances it in C. For example, the
percentage of variation explained by species identity alone

increases for carbon (R2 from 0.721 for Cmass to 0.945 for
Carea), but decreases for nitrogen (R2 from 0.786 for Nmass

to 0.460 Narea). Absorption features that differentiate species
or functional groups can aid estimates of Carea much more
than Narea, whether or not they are causally related to those
traits. Area- and mass-based traits often have different uses:
there is a strong justification for using area-based nutrients
for studying resorption (van Heerwaarden et al. 2003), while
mass-based traits are more often used for explaining decom-
position (Cornwell et al. 2008). The basis of estimation should
be chosen based on these factors rather than the apparent ac-
curacy of the models.

Visible-range wavelengths where chlorophyll and other
pigments absorb had high importance in our main set of full-
range models. However, removing these wavelengths (“SWIR
models”) did not decrease performance while removing the
SWIR range (“VIS/NIR models”) did. This finding is in accor-
dance with results from fresh leaves, which often show that
the SWIR range has particular importance for accurately pre-
dicting many traits (Dechant et al. 2017; Chen et al. 2022).
It seems that pigments are neither essential for predictions
of litter chemistry, nor do they confound them. Although
the bands where they absorb are assigned high importance
(Fig. 5) and are correlated with leaf traits within species (Figs.
S5–6), much of that information may be redundant with the
SWIR range, where many leaf macromolecules absorb. In-
deed, given that relationships between visible-range pigment
indices and traits are highly variable among species (Figs.
S5–6), information from elsewhere in the spectrum may be
needed to compensate for these differences. The SWIR mod-
els may also transfer better when sample preparation and
storage practices are inconsistent, since wavelengths below
1300 nm may be more influenced by pigment degradation
(Kothari et al. 2023b).

Advancing spectroscopic estimation of litter
traits

Compared to conventional measurements, spectroscopic
estimates of plant functional traits are easy and fast to gen-
erate and can be non-destructive. Spectrometers are costly,
but measuring each spectrum is (on the margin) nearly free.
Once samples have been collected and organized, measur-
ing replicate spectra of each intact sample takes under a
minute. In contrast, both ground-leaf spectra and conven-
tional measurements require grinding leaves, which is la-
borious and destructive. Using our protocol, we could mea-
sure replicate spectra of a ground sample (including sam-
ple tray preparation and cleanup) in 4–7 min, not includ-
ing grinding time. In contrast, we found that doing both
elemental and carbon fraction analysis takes about 25 min
of operator time per sample, also not including grinding
time. The time saved through spectroscopic trait estimation
grows as the number of traits of interest increases. While
our models show varying amounts of error, which are gen-
erally larger (but not always much larger) than conventional
measurements (Serbin et al. 2014), they may aid in study-
ing systems like ours where the variation among species is
also considerable. Since the measurements are so rapid, it
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Fig. 5. The variable importance of prediction (VIP) metric in intact (top) and ground (bottom) models. The dashed black line
represents a threshold of 0.8 suggested as a rough heuristic of importance by Burnett et al. (2021).
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may also be possible to reduce error by taking more replicate
measurements.

Many studies that leverage spectroscopy to address ecologi-
cal questions use models tailored to the particular species and
tissues under study (e.g., McTiernan et al. 2003; Hobbie 2005;
Fortunel et al. 2009). While this practice allows researchers
more confidence in their trait estimates, it requires them
to spend time and money doing the manual trait measure-
ments needed for calibration, which they must repeat for
any new study system they adopt. Spectroscopic trait esti-
mation is unlikely to serve as a broad substitute for stan-
dard measurements unless we can create models that are
demonstrably accurate across a wide range of species and
conditions.

The good validation performance of our models does not
guarantee accurate trait estimates from any set of litter sam-
ples. While our samples vary widely in their traits and opti-
cal properties, they all come from temperate trees and are
clearly not representative of Earth’s plant diversity. When
using a model to predict traits for samples with properties
beyond those represented in the training data, there is a
risk that the results may be biased and misleading (Kothari
et al. 2023a). In addition, in instances when models simply
“learn” to exploit any features that happen to correspond
with a trait among species within a given dataset——without
respect to their causal relationship with that trait——they may
become overfit and transfer poorly to new settings (Kothari
and Schweiger 2022). This case is closely linked to the more

general problem in machine learning of distinguishing spu-
rious and invariant correlations (Arjovsky et al. 2020). As the
volume of available spectral data increases, taking care to as-
sess out-of-sample generalization and borrowing tools from
machine learning could help us train better spectral models
and make more realistic judgments about their performance
(Kattenborn et al. 2022; Cherif et al. 2023).

Recent studies have attempted to tackle the challenge of
building broad, global trait-spectra models. For example,
Serbin et al. (2019) show that a single model can accurately
predict the LMA of fresh, non-senesced leaves across 11 sites
from the tropics to the Arctic. Although some research has
demonstrated trait prediction across stages of senescence
or decomposition within single species (Gillon et al. 1999a;
Sartori et al. 2022), it remains to be tested whether any sin-
gle model could achieve this goal across many species. The
predictive success of global models for non-senesced leaves
may rely on constrained patterns of trait covariation——for ex-
ample, along continua from sun to shade leaves or conserva-
tive to acquisitive leaves (Osnas et al. 2018)——which may cause
the relationship between traits and optical features to be rel-
atively invariant (Nunes et al. 2017; Kothari and Schweiger
2022). However, the dramatic shifts in leaf chemistry and
cellular structure during senescence (Keskitalo et al. 2005)——
including pigment degradation and nutrient resorption——
could conceivably weaken the relationships among traits, or
between traits and their optical features. If so, it could be
hard to build a global model for senesced leaves (or for all
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leaves, senesced and not) that achieves the predictive success
of global models for fresh green leaves.

Some evidence suggests that litter traits do in fact pre-
dictably covary with each other, and with non-senesced leaf
traits (Freschet et al. 2010, 2012; Jackson et al. 2013). How-
ever, while most fresh green leaves look alike, each species’
leaves may have a distinct optical signature of senescence.
For example, some of our species (Acer rubrum, Quercus alba,
Quercus ellipsoidalis, and Quercus rubra) tend to produce reddish
anthocyanins, but the rest do not. The breakdown of certain
metabolites during senescence also creates a complex mix-
ture of brown pigments (Fourty et al. 1996), which are poorly
described and could vary from species to species. Such varia-
tion could make the relationship between traits and optical
features more contingent for senescent foliage.

Even setting aside these concerns, model generality may
also be complicated by factors like storage conditions, sam-
ple preparation (e.g., grind size), and instruments, which may
affect the spectrum in subtle but important ways (Foley et
al. 1998; Petibon et al. 2021). Overcoming these challenges
may require investing in protocol development, or in trying
algorithms that are more flexible than PLSR in “learning” the
complex signatures of biological variation in heterogeneous
datasets. In the meantime, it may be prudent for researchers
who use existing spectral models in new systems to continue
to take some conventional trait measurements to validate
model performance.

Finally, we note that plants produce and shed many kinds
of tissue besides leaves, and these other litter sources also
contribute to nutrient cycling through resorption and decom-
position (Lü et al. 2012). Reflectance spectroscopy may help
measure nutrient-related traits in other tissues. For exam-
ple, fine root senescence is an important but little-understood
part of nutrient cycling; fine roots may contribute nearly half
of annual litter inputs in forests (Freschet et al. 2013) and vary
considerably in resorption efficiency (Freschet et al. 2010).
Elle et al. (2019) showed that PLSR models built using NIR
reflectance spectroscopy can predict fine root lignin, which
generally increases recalcitrance (See et al. 2019). Continuing
to develop models for other plant tissues could make it easier
to study how plants alter nutrient cycling in a holistic way.

Likewise, nutrient cycling is influenced by traits beyond
those we considered. For example, although we could not
separate cellulose and lignin for methodological reasons,
they may have distinct influences on decomposition, and it
would be ideal to build separate models for them (Talbot and
Treseder 2012). In addition, nutrients other than nitrogen
often limit or co-limit decomposition (Cornwell et al. 2008;
Keiluweit et al. 2015), and phosphorus resorption may be an
important part of nutrient economies when phosphorus lim-
its growth (Hayes et al. 2014). However, estimates of some
micronutrients from reflectance spectra may be unreliable
(Nunes et al. 2017; Kothari et al. 2023a), and other methods
may prove more useful (e.g., X-ray fluorescence spectroscopy;
van der Ent et al. 2018).

Ultimately, whether accurate global models can be built
to predict litter traits from spectra is an empirical question
that can only be settled by amassing a wide variety of data
from across ecosystems and growth forms. We take an initial

step toward this long-term goal by showing that reflectance
spectroscopy can provide accurate litter trait estimates across
many temperate tree species that vary widely in their litter
traits. This line of research shows great promise in relieving
some of the major limitations toward understanding plant
functional ecology in an ecosystem context.
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