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Summary

� Plant ecologists use functional traits to describe how plants respond to and influence their

environment. Reflectance spectroscopy can provide rapid, non-destructive estimates of leaf

traits, but it remains unclear whether general trait-spectra models can yield accurate estimates

across functional groups and ecosystems.
� We measured leaf spectra and 22 structural and chemical traits for nearly 2000 samples

from 103 species. These samples span a large share of known trait variation and represent

several functional groups and ecosystems, mainly in eastern Canada. We used partial least-

squares regression (PLSR) to build empirical models for estimating traits from spectra.
� Within the dataset, our PLSR models predicted traits such as leaf mass per area (LMA) and

leaf dry matter content (LDMC) with high accuracy (R2 > 0.85; %RMSE < 10). Models for

most chemical traits, including pigments, carbon fractions, and major nutrients, showed inter-

mediate accuracy (R2 = 0.55–0.85; %RMSE = 12.7–19.1). Micronutrients such as Cu and Fe

showed the poorest accuracy. In validation on external datasets, models for traits such as

LMA and LDMC performed relatively well, while carbon fractions showed steep declines in

accuracy.
� We provide models that produce fast, reliable estimates of several functional traits from leaf

spectra. Our results reinforce the potential uses of spectroscopy in monitoring plant function

around the world.

Introduction

Plant functional ecology relies on the measurement of traits that
influence how plants interact with their abiotic and biotic envi-
ronment. Such traits can be used to interpret or predict outcomes
at the community scale or ecosystem scale (Funk et al., 2017),
ranging from species sorting across environmental gradients
(Kunstler et al., 2016) to rates of carbon and nutrient cycling
(Cornwell et al., 2008; Ollinger et al., 2008). During the last
20 yr, ecologists have developed standardized trait protocols and
databases to enable broad comparisons of plant functional strate-
gies across species (P�erez-Harguindeguy et al., 2013; Kattge
et al., 2020). Nevertheless, because trait measurement campaigns
can be costly and challenging, trait databases remain sparse and
much of the world’s plant diversity is poorly represented (Kattge
et al., 2020). The resources needed to carry out intensive trait
measurement campaigns using conventional methods have moti-
vated the search for other approaches that could yield fast, reli-
able trait estimates.

One such approach is to predict plant traits from reflectance
spectra, which report the fraction of light reflected from a surface
across a range of wavelengths. For vegetation, the range most
often studied is c. 350–2500 nm, which includes > 97% of solar
radiation (American Society for Testing and Materials, 2020).
Because the structure and chemistry of plant tissues determine
their optical properties, many traits can be estimated from reflec-
tance spectra measured at leaf or canopy scales (Jacquemoud &
Ustin, 2019). At the leaf level, linking reflectance spectra and
functional traits provides a fast way to estimate large numbers of
leaf traits from individual plants. At the canopy level, it enables
researchers to map traits using remote sensing, which may enable
monitoring of plant community structure (Dur�an et al., 2019;
Zheng et al., 2021) or biogeochemical cycles (Wessman
et al., 1988; Chadwick & Asner, 2018) over entire landscapes.
Understanding leaf spectral variation is essential for scaling up to
the canopy level (Asner et al., 2011), and leaf-level spectral
estimates of traits are part of many workflows for canopy trait
mapping (Singh et al., 2015; Wang et al., 2020). These uses of
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leaf spectra make it important to understand their functional dri-
vers (Kothari & Schweiger, 2022).

Methods to predict traits from leaf or canopy spectra can be
summarized into three groups: (1) simple indices calculated from
reflectance at a few wavelength bands (e.g. Sims & Gamon,
2002); (2) physics-based radiative transfer models (RTMs; Jac-
quemoud et al., 2009; F�eret et al., 2017); and (3) multivariate
empirical methods that use large portions of the spectrum to
build trait prediction models. Among this last group of methods,
the most common is partial least-squares regression (PLSR),
although others used include stepwise regression (Grossman
et al., 1996) and (more recently) machine learning approaches
such as support vector machines and convolutional neural net-
works (F�eret et al., 2019; Pullanagari et al., 2021). These meth-
ods are less mechanistic but offer the flexibility often needed to
predict traits associated with complex optical properties (Cur-
ran, 1989). For example, predicting leaf nitrogen concentrations
using RTMs has been a persistent challenge because leaves con-
tain nitrogen in many forms, including proteins (e.g. RuBisCO)
and pigments (Wang et al., 2018; F�eret et al., 2021). Moreover,
the absorption features of nitrogen-containing bonds often over-
lap with others, especially after being broadened by multiple scat-
tering (Curran, 1989). As a result, leaf nitrogen is not identifiable
with unique, distinct absorption features, and is often best pre-
dicted using empirical approaches like PLSR (Wang et al., 2021).
Researchers have likewise built PLSR models to estimate a wide
variety of foliar traits from fresh-leaf spectra, including pigments
(Yang et al., 2016), non-structural carbohydrates (Ely et al.,
2019), condensed tannins (Couture et al., 2016), and even more
complex attributes such as leaf age (Chavana-Bryant et al., 2017)
and photosynthetic capacity (Yan et al., 2021).

Estimating traits from leaf spectra has several advantages that
may compensate for the sparsity of trait datasets. Compared to
measuring a large number of traits, measuring spectra is fast, has
low marginal cost, can be non-destructive, and requires less train-
ing. But since PLSR is purely empirical rather than mechanistic,
a model calibrated using one dataset may yield inaccurate or
biased predictions on another dataset if the association between
traits and optical properties varies among contexts (Yang
et al., 2016; Wang et al., 2020). The problem may be most severe
when the model relies on absorption features that are not causally
associated with the target trait, but rather with other covarying
traits (‘constellation effects’ sensu Chadwick & Asner, 2016;
Nunes et al., 2017). This situation may occur most often when
the target trait lacks major, well-defined absorption features, like
concentrations of many elements (Nunes et al., 2017). If trait
covariance patterns vary among datasets, overfitting to the train-
ing data could cause such models to produce inaccurate trait esti-
mates from new spectral data (Kothari & Schweiger, 2022).
Empirical models may be especially fallible beyond the range of
data used to train them (Schweiger, 2020; Burnett et al., 2021).

To enable the widespread use of spectral models for trait pre-
diction, it is essential to build general models that encompass the
broadest possible range of spectral and trait diversity (Serbin
et al., 2019; Wang et al., 2020). Such models could allow
researchers to estimate plant traits from spectra in their study

systems without going through the laborious process of building
their own models. Asner et al. (2011) invoked this goal in devel-
oping spectral models for many leaf traits in humid tropical forest
canopies around the world. By contrast, Serbin et al. (2019)
focused on a single trait (leaf mass per area; LMA) but included
several functional groups and biomes from the tropics to the tun-
dra. We sought to push this goal further by including both a large
number of leaf traits and a broad range of ecosystems and func-
tional groups, allowing us to compare which traits are the most
practical targets for estimation by general spectral models.

We compiled foliar traits and spectra measured using stan-
dardized protocols on nearly 2000 samples that include trees,
shrubs, graminoids, and other herbs from a range of ecosys-
tems, mainly in eastern Canada (Table 1). We included struc-
tural and biochemical traits that relate to several aspects of leaf
function, including nutrient economics, water relations, photo-
synthesis and photoprotection, and structural defense. We
focused on building models to predict these traits from reflec-
tance spectra, but we also compared the performance of reflec-
tance, transmittance, and absorptance spectra. Among these
properties, reflectance is the simplest and most common to
measure because it bears the most relevance for interpreting
remotely sensed canopy reflectance and does not require an
integrating sphere. But since the content of leaf chemical con-
stituents most directly alters the amount of light absorbed (Jac-
quemoud & Ustin, 2019), we conjectured that absorptance
spectra might be better for estimating traits, and aimed to
determine whether any potential benefit transmittance or
absorptance spectra provide in trait estimation outweighs their
greater costs in time and equipment.

The performance of statistical models is often evaluated by
splitting a dataset at random into calibration and validation sub-
sets. This procedure represents a best-case scenario, since the data
are all collected with the same protocols and, based on the mathe-
matics of random sampling, the two subsets must have similar
distributions of predictor and response variables. Therefore, we
validated our models on both a random subset of our dataset (in-
ternal validation) and on independent datasets (external valida-
tion) – the latter perhaps representing a more realistic test of how
they would perform in practical applications.

Concerns about the generality of spectral trait models also raise
the question: What factors determine whether a trait model yields
accurate predictions on an external dataset? Many existing models
to predict leaf traits were built using samples belonging to a single
functional group or ecosystem, leaving it an open question how
they would transfer to new settings. One might expect that mod-
els would show poorer performance as the calibration samples
(used to build the model) and the external dataset’s samples
become less functionally similar (Yang et al., 2016). But if the
models show consistently strong performance, it would suggest
that associations between traits and optical properties are robust,
not contingent on the particular samples included. To examine
model transferability, we divided our dataset by functional group
and examined model accuracy using each functional group in
turn as the validation dataset for models calibrated using the
remaining functional groups. We posed two hypotheses about
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these analyses: (1) For a given trait, predictions are most accurate
when the trait distributions are most similar between the calibra-
tion and validation datasets; and (2) traits whose predictions are
most accurate on random subsets of the full dataset will also yield
the most accurate predictions (on average) when transferring
models onto left-out functional groups. We aimed to shed light
on the factors that influence a model’s accuracy across a range of
settings.

Materials and Methods

Sampling

We assembled a database (n = 1971; species = 103) of leaf spectra
and functional traits measured as part of the Canadian Airborne
Biodiversity Observatory (CABO; www.caboscience.org). We aggre-
gated data from 10 individual projects carried out during 2018 and
2019 at sites across temperate Canada and one site in southwestern
Australia (Table 1). The sites span a wide range of edaphic proper-
ties, from nutrient-poor bogs and phosphorus-limited woodlands to

highly fertile post-agricultural and wetland sites. Each sample com-
prised a large, homogeneous group of sunlit leaves, which we
divided up for spectral and trait measurements. We classified sam-
ples into seven functional groups: broadleaf trees, coniferous trees,
ferns, forbs, graminoids, shrubs, and vines (Table 1). Further details
on sampling protocols and functional groups are found in Support-
ing Information Methods S1.

Leaf spectral and trait measurements

We measured directional-hemispherical reflectance and transmit-
tance spectra (350–2500 nm) using an HR-1024i spectro-
radiometer equipped with a DC-R/T integrating sphere from
Spectra Vista Corp. (Poughkeepsie, NY, USA). For each sample,
we measured spectra from the adaxial surface of six leaves or (for
small or narrow leaves) leaf arrays. We resampled spectra to 1 nm
resolution, averaged spectra from the same sample, and trimmed
them to 400–2400 nm by removing the ends, which are often
noisy. Finally, we calculated absorptance at each wavelength by
subtracting the sum of reflectance and transmittance from 1.

Table 1 A summary of all projects with samples included in the study.

Project Description

Latitude

range

Longitude

range Species

Samples per functional group

Broadleaf Conifer Graminoid Fern Forb Shrub Vine Total

Beauchamp-
Rioux

Nine common broadleaf tree species
measured from June to October 2018
at multiple forested sites in Qu�ebec
(Beauchamp-Rioux, 2022)

45°24’–45°59’N 73°19’–75°31’W 9 436 436

Blanchard A sampling of nearly all tree species

found in southern Qu�ebec, collected
across multiple sites throughout
summer 2019

45°6’–46°N 73°19’–74°4’W 43 270 68 3 341

Boucherville
2018

A variety of plants sampled in August
2018 from the Parc national des Îles-
de-Boucherville in southern Qu�ebec

45°38’N 73°28’W 12 14 30 22 6 72

Boucherville
2019

A variety of plants sampled in July 2019
from the Parc national des Îles-de-
Boucherville in southern Qu�ebec

45°38’N 73°28’W 19 40 38 59 26 10 173

CABO
General

A small number of samples from
southern Qu�ebec not collected as part
of a specific project

45°28’–45°59’N 71°52’–74°4’W 13 33 6 3 39 81

Crofts Trees sampled in July 2019 across an

altitudinal gradient in southeastern
Qu�ebec, along the transition from
temperate deciduous to boreal forest

45°25’–45°29’N 71°7’–71°13’W 24 139 60 5 204

Girard Four common bog plants sampled in
summer 2018 in Ontario and southern
Qu�ebec across a gradient of nitrogen

deposition (Girard et al., 2020)

45°25’–46°46’N 71°4’–75°32’W 4 23 72 95

Hacker Plants sampled in May 2019 to evaluate
functional trait variation throughout
an endangered oak savannah in British
Columbia (Hacker et al., 2022)

48°47’–48°49’N 123°38’–123°39’W 23 10 38 7 90 56 201

Phragmites

temporal
Five co-occurring wetland plant species
sampled from June to September 2019

in Boucherville, Qu�ebec (Pardo, 2021)

45°35’–45°39’N 73°27’–73°29’W 5 240 60 300

Warren Agonis flexuosa sampled in November
2018 along a chronosequence of
increasing soil age in southwestern
Australia (Turner et al., 2018)

34°36’–34°49’S 115°52’–116°4’E 1 68 68

Total 103 996 128 359 7 242 223 16 1971

CABO, Canadian Airborne Biodiversity Observatory.
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Further details on spectral measurement and processing can be
found in Methods S1.

We measured the following traits on each leaf sample: leaf
mass per area (LMA), leaf dry matter content (LDMC), equiva-
lent water thickness (EWT; defined as foliar water volume per
area), and concentrations of soluble cell components, hemicellu-
lose, cellulose, lignin, Chl a, Chl b, total carotenoids, and a num-
ber of elements (Al, C, Ca, Cu, Fe, K, Mg, Mn, N, Na, P, and
Zn). Elements other than C and N were only available for a few
projects that account for about one-third (n = 678) of the total
samples. Further details on trait measurement protocols can be
found in Methods S1. We compared our trait distributions to the
TRY trait database to evaluate how well they span the global
range of trait variation. Although it has known geographic and
taxonomic biases, TRY is the most comprehensive database of its
kind (Kattge et al., 2020). We also performed a principal compo-
nents analysis (PCA) on the scaled and centered trait data to visu-
alize patterns of trait variation among our samples.

Within a dataset, chemical traits may vary more in proportion to
the mass or the area of the leaf (Osnas et al., 2013). When a trait is
distributed mainly proportional to leaf area, mass-normalization
induces a negative correlation with LMA. Since interspecific varia-
tion in pigments tends to be area proportional, Kattenborn
et al. (2019) used this principle, among others, to argue that pig-
ment content (per unit area) is a better target than concentration
(per unit mass) for remote sensing-based estimation. We applied
our PLSR modeling approach to both mass- and area-based traits,
but we focus on mass-based models because conventional protocols
measure most chemical traits on a mass basis, and because most of
our chemical traits were more mass proportional. Chemical traits
should be assumed here to be mass-based when left unspecified.
We calculated the mass proportionality of each chemical trait in
our dataset as the ordinary least squares slope between the log10-
transformed area-normalized trait and log10-transformed LMA
(Osnas et al., 2013).

PLSR modeling

Trait estimation Due to the high dimensionality and multi-
collinearity of spectral data, we used a PLSR modeling approach
to build trait estimation models. PLSR projects the high-
dimensional input dataset (here, spectra) onto a smaller number
of latent components constructed to maximize their covariance
with the variable(s) to be predicted (traits). We built separate
models using reflectance, transmittance, and absorptance as pre-
dictors, in each case using the whole trimmed spectrum (400–
2400 nm). We did not transform the distributions of any trait to
reduce skewness, as is sometimes recommended (Burnett
et al., 2021); in preliminary tests, such transformations did not
yield clear, consistent improvements in model performance
(Fig. S1). We performed all analyses in R v.3.6.3 (R Core
Team, 2020).

We calibrated and validated our main set of models (‘primary
models’) largely following the example of Serbin et al. (2014)
and Burnett et al. (2021) using R package PLS v.2.7.1 (Mevik
et al., 2019). First, we divided the full dataset into 75%

calibration and 25% validation sets at random, stratified by the
functional group (Table 1). We fit a preliminary PLSR model for
each trait on the calibration subset and used 10-fold cross-
validation to select the number of components to use in our final
models. We chose the smallest number of components that
brought the cross-validation root mean squared error of predic-
tion (RMSEP) within one SE of the global minimum – a distinct
number (4–27) for each trait and type of spectrum. We calcu-
lated the variable influence on projection (VIP) metric (Wold
et al., 2001) to determine which spectral regions were most
important for predicting each trait.

Next, we fit our final models through a jackknife resampling
procedure in which we further divided the 75% calibration data-
set 100 times into random 70% training and 30% testing subsets.
For each iteration, we built a model from the 70% training data-
set using the previously chosen number of components and
applied it to the 30% testing dataset. This procedure allowed us
to get a distribution of summary statistics that shows how model
performance varies based on random changes in the training and
testing datasets. The primary model comprises the ensemble of
100 sets of coefficients for each trait – one derived from each iter-
ation of the 70%/30% split – which we applied to the 25% vali-
dation dataset to get a distribution of estimates for each sample.
We call this procedure an ‘internal validation’ because the cali-
bration and validation datasets were divided at random from the
same set of samples. We compared the measured values to the
mean estimates for each trait to produce summary statistics (R2,
RMSE, %RMSE). For robustness to outliers, we defined %
RMSE as the RMSE divided by the range of the inner 95% of
trait values, in contrast to a more common definition (Burnett
et al., 2021) that uses the full range.

External validation We compiled data from three sources as
external validation datasets for our primary models. The first two
are LOPEX (Hosgood et al., 1994) and ANGERS (F�eret
et al., 2008), which have been widely used to validate methods
for plant trait estimation from reflectance spectra. Between them,
these datasets include > 500 samples and several dozen species of
temperate (mostly European) broadleaf trees, shrubs, herbs, and
vines – many of them agricultural or ornamental. The third
source is an expanded version of the Dessain dataset previously
described in Kothari et al. (2023), which mainly includes sunlit
broadleaf trees, shrubs, and herbs from southern Qu�ebec and has
a large overlap in species with the CABO data. Unlike LOPEX
and ANGERS, most of the Dessain trait data were measured
using the same protocols as the core CABO datasets. All three
datasets were measured using integrating spheres and include
similar spectral ranges, but the instruments and their specifica-
tions differ from each other and the core datasets we used to train
the models, which can cause slight but important differences in
measured reflectance (Luke�s et al., 2017; Hovi et al., 2018).

We used these datasets to externally validate only our
reflectance-based models because we did not have transmittance
and absorptance spectra for the Dessain project. We applied our
sets of reflectance-based coefficients from resampling analyses
(1009 for each trait) to the spectra in each dataset and took the
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mean of the resulting 100 estimates for each sample for compar-
ison to the measured traits. Not all traits were available for each
dataset. Further details on our handling of external validation
data are in Methods S2.

Model transferability among functional groups Besides assess-
ing the viability of our primary models, we also aimed to test
whether and when models could estimate traits accurately on a
group of species functionally distinct from those used in calibra-
tion (Hypotheses 1 and 2). To this end, we built another set of
models: we selected a single functional group at a time as a valida-
tion dataset and used the reflectance spectra of the remaining
functional groups to calibrate a PLSR model for each trait. We
performed 10-fold cross-validation and component selection as
described earlier, but omitted the jackknife procedure. Finally,
we applied the model to the validation functional group. We
repeated this procedure using each functional group in turn as
the validation dataset, besides ferns and vines because of their low
numbers of samples. Among elements, we only considered C and
N because other elements were only available for certain projects
and we could not guarantee adequate coverage of all functional
groups. We quantified performance using R2, RMSE, and
%RMSE – calculating %RMSE using the inner 95% trait range
of the full dataset in the denominator rather than the inner 95%
trait range of only the validation functional group. This metric,
which we call %RMSEfull to reduce ambiguity, avoids apparent
reductions in model performance due to a narrow trait range in
the validation functional group.

We conjectured that for a given trait, model performance
would decline as the calibration and validation datasets became
more dissimilar in their trait distributions (Hypothesis 1). We
quantified dissimilarity using the Hellinger distance between the
calibration and validation datasets’ distributions for each trait, as
estimated in R package STATIP v.0.2.3 (Poncet & R Core
Team, 2019). Here we focused on %RMSEfull because it is nor-
malized to the scale of the data (unlike RMSE) and incorporates
bias (unlike R2). We tested the influence of trait dissimilarity on
%RMSEfull with analysis of covariance (ANCOVA) using the
Hellinger distance (continuous), the trait identity (categorical),
and their interaction as predictors.

Results

Trait and spectral variability

The ranges for most traits in our dataset spanned most of the trait
ranges in TRY. Many traits, including LMA, EWT, and all ele-
ments other than C and N, had distributions with strong positive
skew in both TRY and CABO data, resulting in a long upper tail
of high values (Fig. 1). For certain elements (Al, Cu, Fe, K, Mg),
the CABO dataset had less representation of values along the
upper tail than TRY. For other elements (Na, P, Zn), as well as
LDMC, N, and pigments, the CABO data had greater represen-
tation of high values. For yet other traits (LMA and C), the
CABO data had a somewhat narrower range toward either
extreme.

Within the dataset, functional groups often differed in their
trait values, as shown by a principal components analysis (PCA)
of the centered and scaled trait data (excluding elements other
than C and N; Fig. S2). The first two PCs of the trait data
explained 65.7% of total variance. Graminoids were distin-
guished by high concentrations of hemicellulose and cellulose
and low concentrations of soluble carbon, lignin, and total C.
Leaf mass per area and LDMC were negatively correlated with N
and pigment concentrations; conifers (besides deciduous Larix
laricina (Du Roi) K. Koch) and the evergreen broadleaf tree Ago-
nis flexuosa (Willd.) Sweet had particularly high LMA and
LDMC, while other functional groups each contained significant
variation along this axis. High values of EWT (> 0.3 mm) were
dominated by evergreen conifers and graminoids adapted to wet-
lands, such as Typha angustifolia L. and Phragmites australis
(Cav.) Trin. ex Steud. Agonis flexuosa represented most of the
samples with the lowest concentrations of P, K, and Fe and the
highest concentrations of Na, while bog shrubs and sedges had
particularly low Ca concentrations. The large fraction of variance
explained by major trait axes indicates that certain clusters of
traits covary strongly, often in ways that correspond to functional
groups.

Our samples showed the typical shape of leaf spectra, includ-
ing a sharp increase in reflectance and transmittance (‘red edge’)
between the visible and near-infrared (NIR; 700–1000 nm)
ranges and prominent water absorption bands in the short-wave
infrared (SWIR; > 1000 nm) range (Figs 2, S3). Compared with
other functional groups, needleleaf conifers had low reflectance
and transmittance and high absorptance across the spectrum.
Forbs also tended to have lower transmittance and higher absorp-
tance in the SWIR. In absolute terms, absorptance and transmit-
tance spectra had greater variation than reflectance spectra,
especially in the SWIR.

PLSR modeling

Internal calibration and validation The accuracy of trait esti-
mates from reflectance spectra varied widely by trait (Table 2;
Figs 3, 4, S4–S10). Our primary models estimated structural and
water-related traits – LMA (R2 = 0.892; %RMSE = 8.04), EWT
(R2 = 0.885; %RMSE = 8.46), and LDMC (R2 = 0.867;
%RMSE = 9.78) – with high accuracy. Models for certain chemi-
cal traits such as carbon fractions (R2 = 0.558–0.826;
%RMSE = 12.7–19.1), major elements such as C, N, K, and Ca
(R2 = 0.541–0.747; %RMSE = 13.2–20.4), and pigments (R2 =
0.644–0.689; %RMSE = 13.8–15.0) also showed intermediate-
to-high accuracy. Finally, models for some micronutrients like
Cu (R2 = 0.295; %RMSE = 25.9) or Mn (R2 = 0.254;
%RMSE = 22.8) performed very poorly. For pigments, N, and
some other elements, models underestimated trait values at the
sparsely represented upper tail of the measured range, while for C
the models overestimated values at the sparse lower tail (Figs 3,
4). Trait models with lower accuracy in internal validation also
had greater variability in accuracy across iterations in the resam-
pling analysis – even when leaving out elements other than C and
N, which also had fewer samples (Figs S11–S13).
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Fig. 1 Density plots comparing the distributions of various leaf structural and chemical traits in the Canadian Airborne Biodiversity Observatory (CABO)
dataset to the TRY database (Kattge et al., 2020). We filtered TRY data to include only values with an error risk below 3. Equivalent water thickness (EWT)
is only shown for CABO because it is not a trait in TRY. Elements besides C and N are only available for the Beauchamp-Rioux, Boucherville 2018, Girard,
and Warren projects. LDMC, leaf dry matter content; LMA, leaf mass per area.
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The VIP metric revealed broad similarities in the regions of
the spectrum that were important for predicting different traits
from reflectance spectra (Figs S14–S16). In particular, major fea-
tures of the visible region, including the green hump (centered at
550–560 nm) and especially the inflection point of the red edge
(710–720 nm), were important for predicting most traits besides

EWT. These visible-range importance peaks (especially at the red
edge) were often higher for traits such as Al, Zn, Mn, and hemi-
cellulose than for pigments, which are the dominant drivers of
visible reflectance (Jacquemoud & Ustin, 2019). In general, VIP
declined into the NIR but had several peaks in the SWIR, includ-
ing relatively distinct peaks for multiple traits at 1390 and
1880 nm, and weaker ones at 1720, 2020, 2150, and 2290 nm.
For EWT, LMA, Cu, Fe, and Na, VIP remained high through-
out a larger portion of the SWIR; uniquely, EWT had its global
maximum VIP at 1390 nm.

In the dataset, most chemical traits were distributed mainly
proportional to mass (Table S1). Exceptions included all pig-
ments and several macronutrients and micronutrients, which
showed mass proportionality < 0.5. We produced estimates of
area-based chemical traits both by building models to estimate
them directly and by multiplying estimated mass-based traits by
estimated LMA (Table S1; Figs S17–S20). For most traits, esti-
mating area-based traits directly yielded more accurate estimates;
the difference was greatest for pigments, Ca, Cu, N, P, which all
have area proportionality < 0.6. However, multiplying mass-
based estimates by LMA estimates was slightly more accurate for
many highly mass-proportional traits, including Al, C, Na, and
cellulose.

For most traits, transmittance and absorptance spectra yielded
slight improvements in performance relative to reflectance
(Table S2; Figs S4–S13). Excluding traits that showed very poor
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Fig. 2 The median leaf reflectance at each wavelength across the
spectrum, separated by functional group. We omit ferns and vines, which
are only represented by one species each. The dashed line shows the
coefficient of variation across all samples.

Table 2 Summary statistics for the performance of reflectance-based models calibrated on CABO data and applied to internal and external validation data-
sets.

Internal Dessain LOPEX ANGERS

No. obs
No.
comps R2 RMSE %RMSE R2 RMSE %RMSE R2 RMSE %RMSE R2 RMSE %RMSE

LMA (kgm�2) 1943 23 0.892 0.0175 8.04 0.593 0.0855 123 0.657 0.111 112 0.519 0.137 117
LDMC (mg g�1) 1930 20 0.867 32.9 9.78 0.824 40.6 13.6 0.860 46.4 12.0
EWT (mm) 1929 13 0.885 0.0334 8.46 0.629 0.0395 24.2 0.888 0.0705 27.5 0.825 0.0665 34.8
N (%) 1963 19 0.709 0.403 13.7 0.417 0.664 21.6 0.537 0.854 20.2
C (%) 1963 20 0.747 1.38 13.2 0.410 2.23 31.6 0.148 2.81 25.5
Solubles (%) 1919 23 0.733 6.59 15.1 0.284 10.9 26.7
Hemicellulose (%) 1915 20 0.695 4.35 16.1 0.324 5.28 19.7
Cellulose (%) 1946 25 0.826 2.74 12.7 0.327 6.68 43.5 0.355 5.47 23.1
Lignin (%) 1946 20 0.558 2.82 19.1 0.152 4.68 29.9 0.167 4.79 26.8
Chla (mg g�1) 1941 13 0.689 2.07 13.8 0.312 2.88 26.7 0.411 2.72 28.1 0.505 2.80 21.9
Chlb (mg g�1) 1941 14 0.679 0.716 15.0 0.318 1.05 31.6 0.443 0.927 23.4 0.412 1.32 28.7
Carotenoids (mg g�1) 1941 12 0.644 0.434 14.7 0.195 0.585 27.0 0.290 0.694 24.8 0.421 1.09 29.9
Al (mg g�1) 677 6 0.304 0.0293 24.6 0.006 0.0813 33.5
Ca (mg g�1) 678 17 0.541 4.03 20.4 0.009 10.4 32.8
Cu (mg g�1) 675 5 0.295 0.00311 25.9 0.004 0.0147 34.0
Fe (mg g�1) 677 4 0.286 0.0295 23.0 0.045 0.053 26.6
K (mg g�1) 678 10 0.550 2.32 15.7 0.443 9.13 28.9
Mg (mg g�1) 678 18 0.394 0.714 22.8 0.149 2.3 53.6
Mn (mg g�1) 678 10 0.254 0.164 22.8 0.005 0.504 54.6
Na (mg g�1) 678 6 0.519 0.451 16.7 0.085 0.881 22.6
P (mg g�1) 678 15 0.313 0.607 20.5 0.051 2.06 51.2
Zn (mg g�1) 677 17 0.487 0.0486 24.2 0.045 0.118 34.9

%RMSE is calculated as RMSE divided by the inner 95% trait range. The column ‘No. obs’ refers to the number of observations for the trait in the full
CABO dataset. The column ’No. comps’ refers to the number of PLSR components selected. CABO, Canadian Airborne Biodiversity Observatory; EWT,
equivalent water thickness; LDMC, leaf dry matter content; LMA, leaf mass per area; RMSE, root mean squared error.
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Fig. 3 Plots of observations against reflectance-based partial least-squares regression predictions among internal validation data for various leaf structural
and chemical traits. The black dashed line in each panel is the 1 : 1 line. Colored lines represent best-fit lines from ordinary least squares (OLS) regression
for each functional group. Error bars around each point represent 95% confidence intervals based on the ensemble of models produced in the 1009 jack-
knife analysis. EWT, equivalent water thickness; LDMC, leaf dry matter content; LMA, leaf mass per area.
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Fig. 4 Plots of observations against reflectance-based partial least-squares regression predictions among internal validation data for elements other than C
and N. These data are only available for the Beauchamp-Rioux, Boucherville 2018, Girard, and Warren projects. The black dashed line in each panel is the
1 : 1 line. Colored lines represent best-fit lines from ordinary least squares (OLS) regression for each functional group. Error bars around each point repre-
sent 95% confidence intervals based on the ensemble of models produced in the 1009 jackknife analysis.
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performance in general (average R2 < 0.35), the greatest improve-
ments between reflectance and either transmittance or absorp-
tance spectra (average D%RMSE > 1) occurred for LMA,
LDMC, EWT, pigments, Ca, K, N, and P. Using transmittance
or absorptance spectra never worsened performance considerably
(average D%RMSE <�1).

External validation We applied our reflectance-based primary
models for each trait to three external validation datasets whose
spectral and trait measurement protocols differed from the
CABO dataset. In general, models performed less well on these
independent datasets than the internal validation (Tables 2, S3,
S4; Figs 5, 6, S21). The traits that had the highest R2 between
observed and predicted values in the internal validation also had
the highest R2 in the external validation. As a result, structural
and water-related traits (LMA, LDMC, and EWT) had
moderate-to-high R2 in the external validation (0.590–0.842
averaged across datasets). The RMSE for LDMC predictions was
only slightly higher than in the internal validation (40.6–46.4 vs
32.9 mg g�1). By contrast, both LMA and EWT were greatly
overestimated for most samples, so even though the R2 was
moderate-to-high, RMSE was also high (LMA: 0.0855–0.137 vs
0.0175 kg m�2; EWT: 0.0395–0.0705 vs 0.0334 mm). Pig-
ments, N, and particularly C and carbon fractions had corre-
spondingly lower prediction accuracy and varying amounts of
bias. Many other macro- and micronutrients (besides K) had very
low prediction accuracy (R2 < 0.15).

Model transferability among functional groups For each trait,
models generally performed worse when applied to a functional
group left out from the calibration dataset than when (as in our
primary models) calibrated and applied to random selections of
samples (Figs 6, 7; Table S5). In particular, models calibrated
using the other functional groups tended to show poor perfor-
mance when applied to graminoids or forbs. Carbon fractions
tended to be estimated with relatively low accuracy (high
RMSE, low R2); because these carbon fractions were predicted
well within the internal validation, this result weakened the
relationship posited in Hypothesis 2 between average model
performance in internal validation and in functional group
transferability analyses. Models for carbon fractions applied to
graminoids yielded particularly biased predictions, with %
RMSEfull > 50 for all but lignin. While graminoids were dis-
tinctively high in hemicellulose and cellulose and low in sol-
ubles and lignin, the model predicted them to be much more
similar to the other functional groups (Fig. 7). Models for
LMA applied to conifers likewise showed %RMSEfull > 50
because the distinctively high values of evergreen (non-Larix)
conifers were underestimated.

In our ANCOVA model, there were significant effects of trait
(F11,36 = 2.626; P = 0.014), Hellinger distance (F1,36 = 21.066;
P < 10�4), and their interaction (F11,36 = 4.139; P < 0.001) on %
RMSEfull. This result led us to perform separate linear regressions
between %RMSEfull and Hellinger distance for each trait
(Fig. 6b). The relationship was significant and positive for LMA
(t(3) = 7.141; P = 0.006), but not significant and highly variable

in strength and direction among the other traits. Support for
Hypothesis 1 was thus also weak and equivocal.

Discussion

We built PLSR models to predict widely used foliar traits from
reflectance spectra across nearly 2000 samples of 103 species,
including several functional groups and ecosystems. Our findings
underscore that leaf spectra integrate many aspects of leaf pheno-
types in a single measurement (Cavender-Bares et al., 2017;
Kothari & Schweiger, 2022) and help explain why spectral varia-
tion can serve as a surrogate for phenotypic variation (Schweiger
et al., 2018; Frye et al., 2021).

Comparing PLSR model performance among traits

The performance of our primary models was highest for struc-
tural and water-related traits (LMA, LDMC, and EWT), corrob-
orating studies that have reported high accuracy using diverse
modeling approaches (Serbin et al., 2019; Guzm�an Q &
Sanchez-Azofeifa, 2021). Indeed, the contents of dry matter and
water are strong drivers of optical properties across much of the
NIR and SWIR (F�eret et al., 2008). Our models predicted N, C,
individual carbon fractions, and pigments with intermediate
accuracy. These traits also have known influences on leaf optical
properties. Pigments control optical properties in the visible
range (Jacquemoud & Ustin, 2019) and correlate with N. Cellu-
lose, lignin, and N-containing compounds like proteins also have
bonds with known (if weak) absorption features, primarily in the
NIR and SWIR (Curran, 1989).

Models for elements at low concentrations often showed poor
performance. Most of these elements have no measurable absorp-
tion features in this range, so their concentrations can only be
estimated indirectly, often through symptoms of nutrient defi-
ciency (Jacquemoud & Ustin, 2019). In some cases, our models
could predict variation across, but not within, major biological
groups. For example, Na could be predicted with R2 = 0.519, but
mainly because Australian A. flexuosa has on average more than
twice the Na concentration of other species sampled. The model
could have incorporated any optical features that distinguish
A. flexuosa from other specimens, whether or not those features
truly result from Na concentration. This kind of constellation
effect may underlie the spectroscopic estimation of many ele-
ments (Nunes et al., 2017; Kothari & Schweiger, 2022).

Interpreting PLSR models

The VIP metric revealed strong similarities across traits in the
major peaks of importance, including the green hump, the red
edge, and multiple features in the SWIR (e.g. 1390 and
1880 nm; Figs S14–S16). The general pattern of high VIP along
the green hump and at the red edge is shared by many traits
across studies (Yang et al., 2016; Ely et al., 2019; Yan
et al., 2021; Kothari et al., 2023). In general, visible and red edge
reflectance are dominated by pigments and leaf structure
(Richardson et al., 2002). Many traits show isolated VIP peaks in
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Fig. 5 Plots of observations against reflectance-based partial least-squares regression predictions among external validation data for various leaf structural
and chemical traits. The black dashed line is the 1 : 1 line. Colored lines represent best-fit lines from ordinary least squares (OLS) regression for each dataset.
Error bars around each point represent 95% confidence intervals based on the ensemble of models produced in the 1009 jackknife analysis. EWT, equiva-
lent water thickness; LDMC, leaf dry matter content; LMA, leaf mass per area.
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the SWIR, which are harder to explain in terms of specific traits.
Two peaks are in off-center parts (1390 and 1880 nm) of major
water absorption features, and the SWIR also contains many
shallow, overlapping absorption features of bonds in dry matter
components, making it hard to isolate the influence of any single
one (Curran, 1989). In contrast to these distinct peaks, LMA and
EWT (as well as some elements) had high VIP throughout much
of the SWIR, which might arise from the strong and pervasive
influence of LMA and EWT on SWIR reflectance.

Similarities in VIP may result from trait covariance (Fig. S2),
which could allow models to leverage constellation effects. Some
cases are clear: the three pigment pools correlate tightly with each
other (R2 = 0.853–0.974) and with N (R2 = 0.457–0.517), and
their VIP patterns share an overall visual similarity. Likewise, sol-
ubles, hemicellulose, and cellulose are closely linked
(R2 = 0.643–0.834) and have similar VIP patterns. Other expla-
nations are more elusive: for example, all four carbon fractions
have high VIP across the green hump and red edge, but correlate
poorly (R2 = 0–0.107) with pigments and LMA, which account
for most spectral variation in those regions. Such findings imply
that strong covariance with a few key traits cannot alone explain
the striking similarities in VIP, nor the high accuracy of models
for traits like carbon fractions in the internal validation.

Alternate PLSR models

We focused on estimating chemical traits on a mass basis, but the
remote sensing literature contains strong arguments for estimat-
ing certain constituents on an area basis. In particular, leaf optical
properties are driven more by the absolute quantity of a con-
stituent than its quantity relative to other constituents. This con-
sideration should matter most for traits distributed in proportion
to area (Kattenborn et al., 2019). In our dataset, pigments and

several nutrients were mostly area proportional (Table S1). As
Kattenborn et al. (2019) suggested, estimating area-based traits
directly was usually more accurate than multiplying mass-based
estimates by LMA estimates, especially for traits distributed in
proportion to area (Table S1). This consideration is important
given that many research questions may require traits expressed
on an area basis.

Using transmittance or absorptance spectra instead of reflec-
tance spectra increases accuracy for most traits, but only slightly
(Table S2). It may be relevant that the traits that show the great-
est improvement include most of the highly area-proportional
traits. Given that transmittance or absorptance spectra yielded lit-
tle improvement for most traits, adding transmittance measure-
ments may not aid much in trait estimation, although they are
still useful in endeavors like radiative transfer modeling (Spafford
et al., 2021).

External validation and model transferability

Aside from our internal validation, we also considered model per-
formance under less ideal scenarios: we tested the primary models
on external validation datasets, and built another set of models to
be tested on a functional group left out during their construction.
When transferring models to left-out functional groups, perfor-
mance was usually worse (lower R2, higher %RMSEfull) than
when models were evaluated on a random internal validation
dataset (Fig. 6; Table S5). This finding is consistent with previous
studies transferring models among species (Helsen et al., 2021)
or sites (Yan et al., 2021). In general, trait models performed
worse when the trait distributions in the calibration and valida-
tion datasets were less similar, but the strength and even the
direction of the trend varied among traits (Fig. 6b). Thus,
support for Hypothesis 1 was equivocal. Predictions of LMA
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Fig. 7 Plots of observations against reflectance-based partial least-squares regression predictions from model transferability analyses for various leaf chemi-
cal and structural traits. Here, we estimated traits for samples of each functional group from models calibrated on all the remaining functional groups;
within panels, predictions for each functional group come from separately trained models. The black dashed line in each panel is the 1 : 1 line. Colored lines
represent best-fit lines from ordinary least squares (OLS) regression for each functional group. EWT, equivalent water thickness; LDMC, leaf dry matter
content; LMA, leaf mass per area.
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among conifers and carbon fractions among graminoids were
strongly biased and failed to capture the functional distinctiveness
of these groups. These results underscore that models must be
built using samples whose diversity encompasses the models’
expected domain of application (Yang et al., 2016; Sch-
weiger, 2020; Beauchamp-Rioux, 2022).

The external validation was a more severe test of model gener-
ality because the data were collected on different species with dif-
ferent instruments using different trait measurement protocols.
This kind of scenario may represent a more realistic use case for
such models. All traits showed declines in performance from
internal to external validation (Table 2). This result is expected
and consistent with previous findings: for example, Serbin
et al.’s (2019) global model of LMA showed R2 = 0.89 for inter-
nal validation and 0.66 for external validation on LOPEX and
ANGERS, as compared with R2 = 0.89 (internal) and 0.59 (ex-
ternal, averaged across datasets) here. On our data, the Serbin
et al.’s (2019) model shows fairly good performance (R2 = 0.680;
RMSE = 0.036; %RMSE = 17.5%), but with a strong bias
toward underpredicting LMA of conifers and the graminoid Erio-
phorum vaginatum L. and a slight bias toward overpredicting
LMA of most other plants (Fig. S22). These results further
underscore the challenges that arise when transferring models
among settings and instruments.

The rank order of R2 across traits was broadly similar between
the internal validation, external validation, and model transfer-
ability analyses (Fig. 6a), which offers some general support for
Hypothesis 2. Models for LMA, LDMC, and EWT performed
relatively well in all analyses, while models for most macronutri-
ents and micronutrients performed poorly in both internal and
external validation (but were not included in model transferabil-
ity analyses). Pigments, N, C, and carbon fractions were generally
intermediate. However, in both the external validation and
model transferability analyses, C and carbon fractions showed
particularly strong declines in R2 compared to internal validation
(Fig. 6a). Dry matter components such as cellulose and lignin are
associated mainly with weak absorption features throughout the
NIR and SWIR (Curran, 1989). By contrast, traits without such
strong declines – LMA, LDMC, EWT, N, and pigments – have
stronger influences on the spectrum, enough that most are incor-
porated into mechanistic models like PROSPECT (F�eret
et al., 2008). This contrast could imply that models are most
transferable when their target traits have strong absorption fea-
tures. Many chemical traits may be estimated more reliably using
spectra of pressed or ground leaves, which by removing the water
absorption features expose the subtler features of dry matter com-
ponents (Kothari et al., 2023).

Even though our estimates of LMA and EWT correlated well
with measured values in the external validation, they also had a
strong bias toward overestimation (Fig. 5), which could compli-
cate their use in practice. This bias may have resulted from vary-
ing measurement protocols, or from differences in
instrumentation that can have a subtle but pervasive influence on
the measured spectra (Castro-Esau et al., 2006; Luke�s et al.,
2017; Hovi et al., 2018). This bias could perhaps be corrected by
measuring a subset of trait values to determine how they

correspond to model predictions, and then transforming the
remaining predictions accordingly. In the longer term, it might
become easier to get accurate trait estimates using existing models
if techniques are developed to reconcile differences among instru-
ments (Meireles et al., 2020; Schweiger, 2020). Deep learning
approaches like convolutional neural networks may also address
this problem through their greater flexibility and capacity for
transfer learning (Kattenborn et al., 2021).

Implications for global trait-spectra modeling

Our models draw from samples representing several functional
groups and a wide range of temperate ecosystems, including wet-
lands, grasslands, and closed-canopy forests (Table 1). However,
these samples represent just a portion of Earth’s vast plant diver-
sity – omitting, for example, tundra, drylands, and tropical
biomes. These biomes would surely contain combinations of
optically important traits missing in our dataset, which would
need to be represented in a universal model that could be used in
mapping functional trait variation worldwide. Likewise, we focus
on sunlit leaves, but the relationships we find between traits and
spectra may generalize poorly to shade leaves (Yang et al., 2016).
We hope plant ecologists can use our data and models not only
as a tool to address ecological questions, but also as a foundation
for building yet more general models.

Our results imply that some traits can consistently be esti-
mated better than others. We can compare our findings with
Asner et al. (2011), who measured a similar set of traits on a vast
number of samples from canopy leaves in humid tropical forests.
The two studies are broadly consistent despite representing dis-
parate subsets of the world’s plant diversity. Both found that
models for LMA and water content were most accurate
(R2 > 0.85), followed by, in varying orders, C and N, pigments,
and carbon fractions (R2 = 0.55–0.85). In both studies, models
for other elements were typically worse (R2 < 0.65), but better for
Ca and K than many other elements. Both studies also found that
transmittance spectra yielded slightly better performance for most
traits. The stability in rankings suggests a general hierarchy of
traits that are the most practical targets for reliable model-based
estimation.

The emerging body of research showing that spectral models
can yield fast, reliable estimates of many leaf traits across func-
tional groups, and ecosystems could expand our ability to map
and monitor plant function around the world. Because leaf spec-
tra are among the dominant influences on canopy spectra (Baret
et al., 1994), understanding the relationship between traits and
spectra at the leaf level is a foundation for doing so at the canopy
level. When a leaf trait cannot be estimated from leaf spectra, it
may also be infeasible to estimate it from canopy spectra except
perhaps through covariance with canopy structure (Kothari &
Schweiger, 2022), or in those cases where multiple scattering
within canopies enhances chemical absorption features (Baret
et al., 1994).

In more practical terms, leaf-level spectral trait estimates may
serve to help bridge the gap in scale between conventional trait
measurements and remote sensing of plant function. For

New Phytologist (2023) 238: 549–566
www.newphytologist.com

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation

Research

New
Phytologist562

 14698137, 2023, 2, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18713 by U

niversity O
f C

algary, W
iley O

nline L
ibrary on [16/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



example, trait estimates based on leaf-level empirical models
have higher throughput than conventional measurements, mak-
ing them useful for training canopy-level empirical models
(Singh et al., 2015; Wang et al., 2020). As drone-based sensors
approach the spatial resolution of individual leaves (Arroyo-
Mora et al., 2019), it may even become feasible to apply leaf-
level models directly to image pixels. The potential development
of general leaf-level empirical models also suggests the prospect
of combining them with canopy RTMs. Inverting canopy
RTMs allows the estimation of leaf spectra, and canopy models
are often coupled with leaf RTMs like PROSPECT to further
estimate leaf traits (Jacquemoud et al., 2009). However, using
leaf-level empirical models rather than leaf RTMs could allow
more flexibility to predict a wider range of traits. As increasing
volumes of remotely sensed data arrive from drones, airborne
sensors, and satellites, the task of scaling between point mea-
surements on the ground and continuous canopy imagery will
surely grow in importance.

Our findings clarify both the opportunities and challenges of
using spectral trait estimates. Research has not yet progressed to
the point where plant ecologists can use existing empirical models
to estimate traits in their study systems without further valida-
tion. Aside from the issues of taxonomic and functional represen-
tativeness, our external validation underscores the challenge of
transferring models among instruments. If models are limited in
their scope to particular instruments, taxa, or ecosystems, the
result may be an undesirable proliferation of models, selecting
among which requires specialized knowledge. Overcoming these
issues may require data synthesis across taxa and ecosystems and
new methodological developments to reconcile data across instru-
ments. Even setting these issues aside, some aspects of leaf func-
tion (e.g. elemental composition) may remain hard to measure
accurately based on spectroscopy alone. We hope that the pro-
mise of rapid, large-scale monitoring of plant function inspires
the coordinated effort needed to understand and (when possible)
overcome these challenges.

In sum, we built models to predict traits from reflectance spec-
tra using nearly 2000 leaf samples from 103 species. Traits varied
a great deal in how well they could be estimated using spectral
models. Our models for structural and water-related traits were
very accurate in internal validation and showed great promise in
external validation; by contrast, our models for many micronutri-
ents performed very poorly. We suggest that these patterns reflect
a general hierarchy that emerges mainly from the varying degrees
of influence these traits have on the spectrum. Leaf reflectance
spectra thus bear the imprint of many aspects of leaf function –
but not all to the same degree. Most importantly, we show that
many traits can be estimated accurately from spectra using gen-
eral models that span multiple functional groups and ecosystems.
This finding represents a significant advance in leveraging spectra
toward major goals in functional ecology.
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Data availability

All fresh-leaf spectral data used in calibration and internal valida-
tion are available through the CABO data portal (https://data.
caboscience.org/leaf), and the spectral and trait data are also
archived on EcoSIS (Kothari et al., 2022a). Spectral and trait data
from the Dessain project used in external validation are archived
on EcoSIS (Kothari et al., 2022c). The primary models based on
reflectance (with mass- and area-based traits), transmittance, and
absorptance spectra are archived along with instructions for using
them on Borealis (Kothari et al., 2022b). Spectral processing and
analysis scripts are available as a repository on GitHub (https://
github.com/ShanKothari/CABO-trait-models), and the specific
version used for this manuscript is also archived at Zenodo
(Kothari, 2022).
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