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Abstract
Airborne hyperspectral imaging holds great promise for estimating plant diversity and
composition, given its unprecedented combination of aerial coverage, spatial resolution, and
spectral detail. Recently, there has been renewed attention toward the spectral variation hypothesis
(SVH), which predicts that higher spectral variation is correlated with greater plant diversity.
While several studies have highlighted methodological challenges involved with the SVH, there is
little consensus about when it yields strong predictions of taxonomic, functional, and phylogenetic
diversity. In part, this may be because prior studies have not explicitly considered how underlying
environmental gradients drive changes in spectral and species composition. In this study, we tested
the SVH separately in open vegetation (i.e. grasses and shrubs) and in forests at five sites across
Canada. Generalized additive models revealed that spectral diversity was a better predictor of
functional α-diversity than of taxonomic or phylogenetic α-diversity in both vegetation types.
Mantel tests and Procrustes analyses revealed weak to moderate associations between spectral and
plant β-diversity and composition in open vegetation, and moderate associations in forests. The
better fit in forests appeared to be influenced by the presence of an elevational gradient and
associated species turnover (from deciduous to coniferous trees); we observed weaker relationships
when examining only a subset of this gradient. We suggest that the high variability in the strength
of associations between plant and spectral diversity reported to date might be affected by the
presence of environmental gradients. Finally, we found that different wavelength bands
contributed to spectral α-diversity in open vegetation vs. forests, suggesting different spectral
features are important for different vegetation types. In conclusion, spectral diversity is a
potentially powerful tool for biodiversity assessment, but it requires a context-specific approach.

1. Introduction

Rapid global changes in climate and other environ-
mental factors have major impacts on plant com-
position and diversity. Monitoring plant diversity
in time and space is thus a priority research area

in environmental science. The concept of spectral
diversity has received renewed attention in recent
years, given its potential contribution to monitoring
platforms using spectral reflectance from air- or satel-
lite borne sensors. The spectral variation hypothesis
(SVH), developed by Palmer et al (2002), suggests
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that high spectral diversity should be associated with
high plant diversity, since plant species have unique
spectral reflectance signatures. To date, local and
regional tests of the SVH have shown highly variable
results, from very strong plant–spectral diversity rela-
tionships (e.g. Frye et al 2021) to low or even negative
associations (e.g. Rossi et al 2022). Comparing these
studies is difficult since the link between spectral vari-
ation and plant diversity appears to depend on meth-
odological decisions and ecological context (Rocchini
et al 2021, Fassnacht et al 2022).

Studies of plant communities can include sev-
eral measures of diversity such as α-diversity (i.e. the
number of species present locally), composition (i.e.
which species are present locally), and β-diversity
(i.e. the magnitude of compositional differences
between localities or plots). These measures can all be
extended to the spectral domain captured by remote
sensing sensors. Many studies of spectral α-diversity
have argued that the spatial resolution of spectral data
should match the size of the individual plants (Wang
et al 2018, Rossi et al 2022) which can be especially
challenging in grasslands, where individuals can be
very small (e.g. a few cm wide). However, finer spa-
tial resolution data can potentially introduce greater
noise into the spectra because entire pixels may cap-
ture non-photosynthetic elements such as shadows
(Imran et al 2021) or bare ground (Wang et al 2018).
In addition, grassland ecosystems often have high
vertical canopy complexity (Conti et al 2021) and
large variation in biomass (Rossi et al 2022), fea-
tures that impact estimates of spectral composition
and diversity. Therefore, wemight expect weaker rela-
tionships of spectral and plant diversity in grass-
lands than in forests. In alignment, Schweiger and
Laliberté (2022), who examined the SVH across eco-
systemswith distinct vegetation types, found stronger
correlations between spectral diversity and plant α-
diversity in forests than grassland ecosystems. They
suggested that the strength of correlation increases
with leaf area index; however, their conclusions were
drawn using spectral data acquired at one resolution
across ecosystems. Considering these findings, it is
essential to investigate the universality of the hypo-
thesis across a range of common biomes, accounting
for their different characteristics in terms of spatial
resolution.

Besides estimating taxonomic diversity (based on
species identities and their abundances), an increas-
ing number of ecological studies now also focus on
the functional or phylogenetic dimensions of plant
diversity (Cavender-Bares et al 2017, Schweiger and
Laliberté 2022). These indices consider the degree
of functional or phylogenetic difference between
species—i.e. two species in a plot might be very sim-
ilar (low diversity) or very different (high diversity).
The functional dimension of diversity is predicted to

have a closer link to spectral information, as plant
functional traits directly affect the absorption and
reflectance of plant leaves (Ustin et al 2004,Homolová
et al 2013).

The SVH is most often tested using α-diversity,
but the logic extends to community composition
and β-diversity. Schweiger and Laliberté (2022)
found stronger relationships between spectral β-
diversity and plant β-diversity compared to α-
diversity, explaining an average of ∼47% of plant
composition and 18% of plant β-diversity (distance-
based) across multiple sites. Along a humid trop-
ical forest gradient, correlations between spectral and
field-measured diversity were higher forα- (r= 0.86)
than β-diversity (r = 0.61–0.76) (Féret and Asner
2014). Long environmental gradients, in particular
in mountain ecosystems, play a crucial role in shap-
ing species composition and diversity (Buckley and
Jetz 2008). Long gradients are thus likely to enhance
relationships between spectral and plant β-diversity.
A few studies have explored their effects on spectral
composition or diversity (White et al 2010, Schneider
et al 2017, Bongalov et al 2019, Durán et al 2019,
Schroeder et al 2023), but the impact of environ-
mental gradients on the SVH has not been directly
addressed yet.

Here, we evaluate the SVH for multiple dimen-
sions of plant diversity in two vegetation types (open
vegetation and forests). Our objectives were:

(1) to compare spectral–plant diversity relationships
in open vegetation and forests considering taxo-
nomic, functional, and phylogenetic dimensions
of α- and β-diversity, and

(2) to evaluate the effects of environmental gradients
on these associations.

As part of the Canadian Airborne Biodiversity
Observatory (CABO), we surveyed hyperspectral
and vegetation data in 117 plots across five sites
(three open vegetation sites, two forest sites), with the
plots at forested sites arranged along an elevational
gradient. We employed generalized additive models
(GAMs) to test the relationship between plant and
spectral α-diversity. β-diversity was assessed using
distance-based and ordination-based approaches
(Mantel test and Procrustes analyses, respectively).
We hypothesized that the functional dimension of
diversity would exhibit stronger links to spectral
diversity, at both the α- and β-levels, because spectra
are a direct expression of foliar and canopy chemical
and structural characteristics. We also proposed that
species turnover along the elevational gradient at the
forested sites would enhance spectral–plant relation-
ships, particularly for β-diversity. We thus aimed to
help refine the SVH and compare its applicability in
open vegetation and forests.
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Figure 1. Locations of the five study sites in open vegetation (a)–(c) or forests (d)–(e). Open vegetation sites were the Cowichan
Garry Oak Preserve (CGOP), Mer Bleue peatland (MB), and an abandoned agricultural field in Parc national des
Îles-de-Boucherville (̂Ile Grosbois de Boucherville, IGB). Forest plots were in Parc national du Mont-Saint-Bruno (MSB) and
Parc national du Mont-Mégantic (MMG).

2. Data andmethods

2.1. Plant inventories and response variables
Vegetation surveys were conducted in 2018–2020 as
part of the CABO project. Here, we studied five sites
from the CABO project, located in southern Quebec,
Ontario, and coastal British Columbia (figure 1; table
S1). Sites classified as open vegetation include a savan-
na/grassland (Cowichan Garry Oak Preserve, CGOP,
see Hacker et al 2022), a peatland (Mer Bleue, MB,
see Girard et al 2020), and an abandoned agricultural
field within Parc national des Îles-de-Boucherville
(̂Ile Grosbois de Boucherville, IGB). The two forest
sites are located within Parc national du Mont-Saint-
Bruno (MSB) and Parc national du Mont-Mégantic
(MMG, see Vellend et al 2021, Wallis et al 2023).

At open vegetation sites, the plant communitywas
surveyed in 3 m × 3 m square plots, and for forest
sites, the tree community was surveyed in 15m radius
circular plots (as seen from above). All vegetation sur-
veys followed standardized protocols from the CABO
project (St-Jean and Vellend 2020, Crofts et al 2022).
Because the recorded signal of airborne sensors is
dominated by the portions of plants that are exposed
to direct overhead light, we estimated plant species
abundances as areal coverage visible from above. For
open vegetation, species’ percent cover (abundance)
was estimated in the field or where applicable, using
imagery from a small drone (St-Jean and Laliberté
2020). For forests, all crowns were delineated in the

field (Crofts et al 2022) and we applied a GIS-based
approach to extract the top crown layer exposed
to direct overhead light using the ‘sf ’ package in R
(Pebesma 2018; for details see Wallis et al 2023).

To estimate functional diversity, we used leaf traits
measured according to CABO trait sampling proto-
cols (Laliberté 2018, Ayotte et al 2019). Trait meas-
urements were missing for some observed species.
Consequently, in order to enhance trait coverage to
more than 97% of summed species abundances per
plot, a gap filling procedure was applied for spe-
cies missing trait information using trait values from
TRY data (Kattge et al 2020; see supplementary data).
We decided to use foliar nitrogen (N) content, leaf
dry matter content (LDMC) and leaf mass per area
(LMA) due to their high coverage in plant trait data-
bases. We used these three traits to calculate com-
munity weighted mean (CWM) trait values per plot
where the mean trait values were weighted by spe-
cies abundance. We characterized the phylogenetic
dimension using a backbone phylogeny derived from
the Open Tree of Life (Michonneau et al 2022) with
further information added from the literature for the
crown clades of bryophytes and embryophytes (see
supplementary data).

We analyzed the taxonomic, functional and
phylogenetic dimensions of diversity and compos-
ition following the approach in Wallis et al (2023).
To quantify taxonomic α-diversity, we calculated the
Shannon–Wiener index (Shannon) in the ‘vegan’
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package in R (Oksanen et al 2020). Based on the
three traits, we calculated functional dispersion using
the ‘FD’ package in R (Laliberté and Legendre 2010,
Laliberté et al 2014). For phylogenetic diversity, we
used the mean-pairwise distances calculated in the R
package ‘picante’ (Kembel et al 2020).

We used two distinct approaches to character-
ize β-diversity. In the first approach, we employed
matrices of pairwise dissimilarities between plots to
describe the overall change of species communit-
ies. We calculated taxonomic dissimilarity as Bray–
Curtis dissimilarity between plots based on species
abundances. We calculated functional dissimilarity
as the Euclidean distance between CWM trait val-
ues. For phylogenetic dissimilarity, we calculated the
mean pairwise cophenetic distances between plots
using the ‘picante’ and ‘ape’ R packages (Kembel et al
2020, Paradis et al 2021). In the second approach
to characterize β-diversity, we used ordinations to
summarize the variation in species composition.
Taxonomic and functional composition were quan-
tified using principal component analyses of the
Hellinger-transformed species abundance and stand-
ardized CWM trait values, respectively. For phylo-
genetic composition, we applied the phylogenetic dis-
tance metric (using the pairwise branch-length dis-
tances between the pairs of tips from the phylogenetic
tree) and conducted a principal coordinate analysis
(PCoA), as suggested by Cadotte and Davies (2016).

2.2. Hyperspectral inventories and predictor
variables
Airborne hyperspectral surveys were conducted
alongside the plant inventories in 2018, 2019 and
2020 using two comparable pushbroom imagers col-
lecting spectral information over 288 spectral bands,
covering the visible and near-infrared (NIR) regions
(table S1). One imager was mounted on a remotely
piloted aircraft system and used at the open vegeta-
tion sites, recording data at a very high spatial res-
olution (<3 cm; µCASI, 401–995 nm; Arroyo-Mora
et al 2019, Inamdar et al 2021a). All µCASI data
has been resampled to 10 cm spatial resolution. The
other imager was onboard the Twin Otter fixed-wing
aircraft guided by the National Research Council
of Canada, Flight Research Lab, recording data at
∼2 m spatial resolution over forests (CASI, 375–
1061 nm; Inamdar et al 2021a). The raw hyperspec-
tral data underwent standard pre-processing steps,
including a radiometric, and atmospheric correc-
tion using ATCOR-4 (Inamdar et al 2021b). For
MMG an additional topographic correction using
bidirectional reflectance distribution function was
applied.

Post-processing included several steps: the
removal of non-vegetation (and non-forest veget-
ation in forests) using NDVI thresholds (open

vegetation: NDVI < 0.35; forests: NDVI < 0.75);
shadow filtering using NIR (720.5 nm) and red band
(679 nm), respectively, for µCASI and CASI data with
thresholds derived from pixel sampling (figure S1);
masking wavelengths with a low signal-to-noise ratio
(<450 nm) and water absorption bands (>950 nm);
the uCASI data was spectrally resampled to the same
wavelength array as the CASI imagery to enhance
comparability between the two sensors; smoothing
using a Savitzky–Golay filter with a defined win-
dow size of 21 bands and a polynomial of 4th order.
Finally, continuum removal (CR) was used to reduce
brightness variation across flight lines and to enhance
their comparability, which is expected to improve the
relationship of spectral variance and plant diversity
(Badourdine et al 2023). We calculated the band
depth using a segment hull approach, which detects
also smaller absorption features, using the ‘hsdar’
package (Lehnert et al 2019).

From the CR-reflectance values, we calculated the
average distance to the mean for each wavelength
band and summarized these values per plot, hereafter
called spectral diversity.Wedid not standardize these
distances as commonly done by dividing by the mean
(e.g. when calculating the coefficient of variation),
since band depth values are highly transformed due to
CR.Due to the removal of shadowed pixels and differ-
ent numbers of pixels per plot, we applied a bootstrap
procedure with 20 iterations, randomly sampling
the overall minimum number of pixels at each plot
(383 pixels for open vegetation plots, 81 pixels for
forest plots). We further calculated the mean CR-
reflectance for each wavelength band, hereafter called
spectral composition, which was used to calculate β-
diversity (see statistical analyses).

For all the following statistical analyses, we
removed plots with more than 60% of pixels identi-
fied as shadows, since there might be a spatial mis-
match between the remaining pixels and plant invent-
ories. After removing highly shadowed plots from
spectral data, 54 plots in open vegetation and 63 plots
in forests remained.

2.3. Statistical analyses
We employed various statistical methods to test the
SVH for α-and β-diversity. For α-diversity, we used
univariate GAMs with a Gaussian error distribution
and penalized regression splines. We allowed for the
degree of freedom to vary between one and four and
employed spectral diversity as a predictor for taxo-
nomic, functional, and phylogenetic plant diversity.
We separately calculated GAMs for forest and open
vegetation plots using the ‘mgcv’ package in R (Wood
2017). We did not combine data from forests and
open vegetation, as differences in number of pixels
per plot due to different spatial resolution would
affect interpretability of the models.
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To analyze plant species composition and β-
diversity, we employed a ‘distance-based’ and a ‘raw
data’ approach, both described in Legendre et al
(2005). For the distance-based approach, we used
Mantel tests implemented in the ‘vegan’ package
(Oksanen et al 2020) to examine whether pair-
wise spectral distances were associated with pair-
wise plant compositional dissimilarities (β-diversity)
among plots. For the spectral dimension, we used
the Manhattan distance of the mean spectral sig-
nal per plot. In addition, we performed a Procrustes
Randomization test also implemented in the ‘vegan’ R
package (Oksanen et al 2020) to examine the associ-
ation between plant and spectral composition across
sites (raw data approach; Peres-Neto and Jackson
2001). We used the first three ordination axes of the
standardized raw data matrices due to the limita-
tion of having three CWM trait values per plot. We
also performed Procrustes analyses with one com-
ponent only, as the first component often represents
the strongest compositional turnover along the envir-
onmental gradient.

We tested the significance of the computed cor-
relation coefficients fromMantel tests and Procrustes
analyses using 999 random permutations. As met-
rics of association, we used the adjusted R2 value
from GAMs which are less affected by sample size
compared to R2 values (but see Cramer (1987), the
Pearson correlation coefficient from Mantel tests,
and the correlation coefficient from Procrustes ana-
lysis. While comparison between these metrics is
not recommended due to differences in their abso-
lute magnitude (Legendre et al 2005), they allow us
to compare the SVH between open vegetation and
forests and between the different dimensions of plant
diversity and composition.

Our second objective concerned the impact of
environmental gradients on the SVH. Among our
sites, the forests span an obvious elevational gradi-
ent (Vellend et al 2021, Wallis et al 2023), with an
almost complete species turnover from deciduous
species at lower elevation to coniferous species at
higher elevation. A detrended correspondence ana-
lysis in R using the ‘vegan’ package (Oksanen et al
2020) revealed a gradient length (on the first axis)
of 7.43 for forests and 1.15 for open vegetation. To
test the impact of gradient length, we shortened the
elevational gradient by a stratified sampling of forest
plots, extracting (i) only deciduous-dominated plots
(abundance of deciduous species >75%) and (ii) an
equal number of plots from deciduous-dominated
plots, mixed plots (25%–75% of deciduous/conifer-
ous crown coverage) and conifer-dominated plots
(abundance of coniferous species >75%). We used a
bootstrap with 50 iterations with a subsample of 21
plots each and we re-ran all analyses on each data
subset.

3. Results

Plant species richness was higher in open vegeta-
tion than in forests, with the highest species rich-
ness at the savannah site (CGOP, figure 2(a)). From
the airborne spectra, two primary peaks in the CR-
reflectance could be identified in both vegetation
types: one at 500 nm and one at 650 nm (figure 2(b)).
There was a major contrast between the two veget-
ation types: open vegetation, particularly the savan-
nah site (CGOP), showed high variation in spectral
composition across plots in the two peaks. Spectral
dispersion, however, varied more in the second peak
across plots. Forest plots showed more variation in
spectral composition in the 500 nm peak, with higher
variation found forMMG. Spectral dispersion within
forests, in turn, was overall higher in the first peak
and showsmore variation across all plots.While some
variation in the NIR around 920 nm was found, their
contribution to spectral diversity (the sum of disper-
sion of all wavelength bands) seems to be negligible.

Models of α-diversity revealed nearly linear
relationships between spectral diversity and plant
diversity, with most models statistically significant.
These models explained 18%–54% of the variation in
plant α-diversity (figure 3(a)). Model fits depended
on the spectral region used to calculate spectral
diversity (figure 3(b)). For both vegetation types,
functional diversitymodels showed the strongest rela-
tionships among the three dimensions (R2 = 0.50
for open vegetation, and R2 = 0.54 for forests, both
p < 0.001). The model for phylogenetic diversity in
open vegetation was less significant than all other
models (p< 0.05). The low range of observed phylo-
genetic diversity values in the savannah (CGOP)
appears to be due to an even distribution of mono-
cots and dicots (a deep split in the phylogeny)
across all plots (figure S2), while its spectral diversity
showed more variability across plots. We found weak
associations between spectral distance and plant β-
diversity in open vegetation, where only the relation-
ship to taxonomic distance was significant (r = 0.23,
p < 0.001; figure 4). Spectral distance in forests was
significantly associated with taxonomic, functional,
and phylogenetic distances, and correlation coeffi-
cients varied between r = 0.38–0.49 (p < 0.001;
figure 4). Meanwhile, the results for the raw data
(Procrustes) approach showed moderate correlations
between spectral and plant composition (r = 0.39–
0.59, p < 0.001) across all plant dimensions and in
both vegetation types (figure 5).

Overall, we found stronger associations between
spectral and plant diversity, both α and β, within
forests. This was still the case after we accoun-
ted for the difference in the number of plots
between open vegetation and forests (see figure
S4). At the taxonomic and phylogenetic dimen-
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Figure 2. (a) Species richness in open vegetation and forests. Boxes indicate the median and the interquartile range. Black points
indicate outliers and colored points indicate the raw data values. (b) Average continuum-removed (CR-) reflectance (spectral
composition) for open vegetation and forests (one line per plot). Continuum removal was done by dividing the segment hull
from the reflectance data followed by band depth calculation. The black line indicates the mean spectral dispersion per vegetation
type, calculated as the mean absolute distance to the mean for each wavelength band. The shaded area around the black line
indicates the standard deviation of spectral dispersion across all open vegetation and forest plots, respectively. Colors in (a) and
(b) indicate different sites (see figure 1).

Figure 3.Model fits derived from generalized additive models of spectral diversity and plant α-diversity with spectral diversity
calculated from (a) all wavelength bands and (b) specific spectral regions. We used Shannon diversity, functional dispersion and
the mean pairwise phylogenetic distance for taxonomic, functional and phylogenetic diversity, respectively. Points in (a) represent
raw data values, and the solid black line indicates the smooth GAM function (allowed basis functions range between 1 and 4) with
its standard error (shaded area).

sions, the association of spectral and plant compos-
ition was only slightly higher within forest sites, but
when using only the first component in Procrustes

analyses, correlation coefficients showed a higher
magnitude for forests (r = 0.68–0.83, p < 0.001)
than open vegetation (r = −0.16–0.63; figure 5).
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Figure 4. Scatterplots of pair-wise compositional dissimilarity and spectral dissimilarity values. Correlation coefficients and
significance levels were derived fromMantel tests with 999 permutations.

Figure 5. Correlations between spectral composition and plant composition derived from Procrustes analyses. Significance levels
(∗∗∗p⩽ 0.001, ∗∗p⩽ 0.01, and ∗p⩽ 0.05) were derived from permutations (n= 999). For taxonomic, functional, and spectral
composition, principal component analyses (PCA) were used; for phylogenetic composition, principal coordinates analysis
(PCoA) was used. The first three components were used in Procrustes analyses since the functional dimension was composed of
only three traits. The light bars indicate the correlation coefficient of a Procrustes solution using the first component only.

Using detrended correspondence analyses, we iden-
tified a short gradient in open vegetation for the
first axis (1.15) and two longer gradients at the
third and fourth axes (>3). In contrast, in forests,
we identified only one long gradient on the first
axis (7.43). The stratified sampling approach within
forests showed that themetrics of association between
spectral and plant diversity were higher when plots

were sampled equally from deciduous-dominated,
conifer-dominated and mixed plots, compared to
plots sampled only from deciduous-dominated plots
(figure 6). This was particularly evident for the GAM
and Mantel test results, where on average the fit
increased from R2 = 0.16 to R2 = 0.56 forα-diversity,
and from r = 0.25 to r = 0.59 for β-diversity. For
composition, we found a moderate increase from
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Figure 6. Strengths of association for α- and β-diversity with plots sampled over different portions of the tree composition
gradient. Simulating a shorter gradient, (a) shows the results for plots dominated by deciduous species (>75% crown coverage)
and (b) shows the results for plots that were equally sampled over the three stand types: deciduous-dominated (>75% of crown
coverage), coniferous-dominated (>75% of crown coverage) and mixed species (25%–75% of deciduous/coniferous crown
coverage). All results were bootstrapped with 50 iterations using a random sample of 21 plots from the defined sites in each
iteration. Boxplots show the median strength of association and interquartile ranges from bootstrapping. For the adjusted R2 and
correlation coefficient values, the same methods as for figures 2, 4, and 5 were applied (generalized additive regression models,
GAMs; Mantel tests, and Procrustes analyses). For Procrustes analyses, test results using only one component are shown in gray.

r = 0.42 to r = 0.60 on average and an even greater
increase in fit when using only the first component in
Procrustes analyses.

4. Discussion

We tested the SVH in open vegetation and forests,
considering the taxonomic, functional, and phylo-
genetic dimensions of plant diversity and compos-
ition. We found that the strength of association of
spectral diversity with plant diversity varied between
vegetation types, between different dimensions of
plant diversity and composition, and between envir-
onmental gradients of different lengths.

Our finding that the SVH is better supported in
forests aligns with previous research (Féret and Asner
2014, Schweiger and Laliberté 2022) and could be
explained by several factors. Sites with open vegeta-
tion showed higher spectral diversity in the second
peak (red/red-edge), which might be caused by non-
detected shadows (Imran et al 2021), high vertical
complexity (Conti et al 2021), differences in biomass
(Rossi et al 2022), or differences in phenology (Wang
et al 2022). Despite these issues, this spectral region

is strongly related to chlorophyll absorption (Horler
et al 1983), and some studies showed that it captures
information relevant for the plant–spectral diversity
relationship (Aneece et al 2017, Imran et al 2021).
Consistent with this idea, we found that for open
vegetation, α-diversity was as closely associated with
spectral diversity calculated only from 551 to 780 nm
as it was with spectral diversity calculated from the
full spectrum. In contrast, for forests, relationships
were weaker when estimating spectral diversity from
the red or NIR regions than from the full spec-
trum. Predicting plant diversity in open vegetation
vs. forests may accordingly require calculating spec-
tral diversity metrics using different spectral regions.
The optimal spectral regions may depend on species
composition and its spatial variation, which might
hinder a general application of the SVH without a-
priori knowledge of the plant community and their
spectral responses.

For α-diversity, spectral diversity was more
strongly related to functional diversity than to taxo-
nomic or phylogenetic diversity, regardless of the
vegetation type. This finding was expected, as func-
tional traits are mechanistically linked to the spectral
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signal (Asner and Martin 2009, Rocchini et al 2022).
Accordingly, we would also expect stronger correl-
ations between spectral and functional distance and
were surprised by the lack of a significant relationship
for distance-based functional β-diversity observed in
open vegetation. We speculate that this may be the
result of gradients that drive turnover in the func-
tional composition of open vegetation related to
traits that are causally or indirectly linked to NIR
reflectance (e.g. leaf nitrogen content; Ollinger et al
2008, Knyazikhin et al 2013), a region of the spectra
where the applied continuum-removal reduces the
signal and, therefore, may weaken the functional–
spectral relationship. Alternatively, multiple envir-
onmental gradients may drive functional distance
in open vegetation that do not have a strong influ-
ence on the overall spectrum. This is supported by
the fact that selected parts of plant composition can
be explained by spectral composition, as shown in
Procrustes analyses.

Our results indicate that the strengths of spectral–
plant diversity relationships in forests are strongly
influenced by the length of the elevational gradient, in
our case spanning a transition fromdeciduous to con-
iferous species with elevation. This seems to be over-
looked in the spectral diversity literature and could
have implications for interpreting previous and future
studies. For instance, studies that found positive
plant–spectral diversity relationships in forests often
investigated forest plots that spanned long environ-
mental gradients, particularly elevation and climate
gradients (e.g. Féret and Asner 2014, Schweiger and
Laliberté 2022). These environmental gradients likely
have amajor influence on the composition of tree spe-
cies; for example, here we observed an almost com-
plete turnover in tree species composition from one
end to the other of the gradient. In addition to com-
positional changes, we also found differences in spec-
tral diversity between deciduous, mixed, and conifer-
ous dominated plots (figure S3), indicating that the
length of the gradient not only affected β-diversity
results, but also α-diversity relationships. Thus, rela-
tionships between environmental gradients, species
turnover, and spectral diversity appear key to inter-
preting tests of the SVH.

One potential limitation of our study is that we
investigated only three plant functional leaf traits with
almost no coverage of intraspecific trait variation:
LDMC, LMA, and foliar N content. While these traits
were selected due to their broad coverage across the
sampled plant species, they do not capture all relevant
aspects of plant function in different vegetation types
and environmental gradients. As a result, our analysis
may have failed to capture the effects of other import-
ant functional traits, such as those related to plant
architecture, leaf anatomy, and chemical defense, that
could result in stronger relationships between spectral
and plant diversity, particularly in open vegetation.

5. Conclusion

Our study has significant implications for the use
of hyperspectral imaging in biodiversity assessments
and conservation planning. Our findings suggest that
spectral diversity is particularly effective formodeling
functionalα-diversity across diverse vegetation types.
However, it is important to note that its applicab-
ility to modeling plant composition and β-diversity
may depend on the specific ecological context. Our
results reveal a complex interplay between environ-
mental gradients and support for the SVH, high-
lighting the need to carefully consider the ecolo-
gical factors that may impact the accuracy and reli-
ability of spectral-based biodiversity assessments. We
also found that factors such as the vegetation type,
the choice of diversity measures and dimensions can
affect relationships with spectral data and therefore
the conclusions drawn from studies of the SVH.
Future studies could benefit from a more in-depth
exploration of the SVH along various environmental
gradients, incorporating a wider range of functional
traits and spectral wavelength bands (e.g. short-wave
infrared bands) but also spectral feature selection.
This would provide a more comprehensive under-
standing of the drivers of spectral diversity across
various vegetation types, but particularly in open
vegetation ecosystems where non-biological spectral
noise andmultiple environmental gradientsmay pose
a significant challenge. Based on our findings we thus
recommend a nuanced and context-specific approach
to using hyperspectral imaging for biodiversity assess-
ments and conservation planning.
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