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A B S T R A C T

The Spectral Variation Hypothesis (SVH) posits that higher spectral diversity indicates higher biodiversity, which 
would allow imaging spectroscopy to be used in biodiversity assessment and monitoring. However, its appli-
cability varies due to ecological and methodological factors. Key methodological factors impacting spectral di-
versity metrics include spatial resolution, shadow removal, and spectral transformations. This study investigates 
how these methodological considerations affect the application of the SVH across ecosystems and sites. Using 
field and hyperspectral data from forest and open (e.g., wetland, grassland, savannah) ecosystems from five sites 
of the Canadian Airborne Biodiversity Observatory (CABO), we analyzed three variance-based spectral diversity 
metrics across and within vegetation sites, examining the effects of illumination corrections, spatial resolution, 
and shadow filtering on the spectral-plant functional diversity relationship. Our findings highlight that the 
relationship between spectral diversity metrics and functional diversity are strongly influenced by methods, 
especially spectral transformations. These illumination corrections notably impacted the spectral regions of 
importance and the resulting relationships to plant functional diversity. Depending on methodological choices, 
we observed correlations that varied not only in strength but also direction: in open vegetation we saw negative 
correlations when using brightness normalization, and positive correlations when using continuum removal. 
Shadow removal and spatial resolution were important but had less impact on the correlations. By systematically 
analyzing these methodological aspects, our study not only aims to guide researchers through potential chal-
lenges in SVH studies but also highlights the inherent sensitivity of spectral-functional diversity relationships to 
methodological choices. The variability and context-dependence of these relationships across and within sites 
emphasize the need for adaptable, site-specific approaches, presenting a key challenge in developing robust 
methods to enhance biodiversity monitoring and conservation strategies.

1. Introduction

Remote sensing has emerged as an essential tool for vegetation 
assessment monitoring across landscapes, extending its potential 
beyond traditional field inventories (Coops et al., 2023; Goetz and 
Dubayah, 2011; White et al., 2016). A key technique in ecological 
remote sensing is reflectance spectroscopy, which involves the 

measurement of electromagnetic radiation reflected by Earth’s surfaces 
between ~350–2500 nm (the reflectance spectrum). Reflectance prod-
ucts from image spectroscopy enables the detection of nuanced infor-
mation related to plant health, composition, and structural attributes 
within ecosystems (Cavender-Bares et al., 2017; Huete, 2004; Wang and 
Gamon, 2019). By incorporating wavelengths beyond the visible spec-
trum (> 700 nm), it enhances the ability to quantify and analyze 
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ecological traits such as vegetation structure and overall plant state 
(Jacquemoud and Ustin, 2019).

The concept of spectral diversity—the variation in reflectance 
spectra within a specific area—is central to the Spectral Variation Hy-
pothesis (SVH). This hypothesis posits that greater spectral diversity 
within a given area reflects greater biodiversity and functional 
complexity (Palmer et al., 2002). Although the SVH offers a straight-
forward premise, studies present divergent findings, suggesting that it 
may be challenging to implement the SVH in a way that applies uni-
versally (Fassnacht et al., 2022; Thornley et al., 2023). This concern 
restricts its potential use for biodiversity mapping or monitoring via 
remote sensing.

To understand the applicability of the SVH, many studies have 
explored various ecological factors to determine when it is successful. 
For example, the strength of relationships in SVH models tends to be 
higher in vegetation with a higher leaf area index (Schweiger and 
Laliberté, 2022), simpler vertical canopy structures (Conti et al., 2021), 
less biomass variability (Rossi et al., 2022), and more pronounced 
environmental gradients (Wallis et al., 2024). Phenological factors also 
play a crucial role with contrasting phenological patterns of spectral 
diversity metrics emerging at leaf and canopy scales (Wang et al., 2022). 
Additionally, functional plant diversity often shows stronger correla-
tions with spectral diversity compared to taxonomic diversity (Crofts 
et al., 2024a; Wallis et al., 2024). These factors influence the results and 
conclusions drawn from the SVH by affecting how ecological processes 
interact and manifest in different settings. However, it is challenging to 
compare the findings of these studies due to methodological differences, 
whose impacts have yet to be explored systematically.

A major difference among studies addressing the SVH is their spatial 
resolution. While some studies utilize data of medium to coarse spatial 
resolution from 10 to 500 m per pixel (Lopes et al., 2017; Schmidtlein 
and Fassnacht, 2017), findings like those from Lopatin et al. (2017)
advocate aligning the sensor’s spatial resolution with the scale of indi-
vidual plants. In grassland environments, for instance, spatial resolu-
tions are often on the centimeter scale, sometimes finer than 1 cm in 
order to avoid the capture of reflectance from multiple species within a 
single pixel (Hacker et al., 2022). Therefore, a high spatial resolution (1 
cm - 2 m depending on the target species) is crucial for accurately 
capturing the spectral signatures of individual plants. At these finer 
resolutions, however, challenges arise, particularly the effects of canopy 
shadows. Canopy shadows, which result from varying light conditions 
under the canopy, can distort spectral data (Zhang et al., 2015). Mixed 
pixels, which contain signals from both vegetated and shadowed or non- 
vegetated areas, complicate the spectral reflectance data and obscure 
the true spectral signatures of the target species. Although some studies 
have examined the impact of spatial resolution on vegetation moni-
toring (Lopatin et al., 2019; Milas et al., 2017; Zhang et al., 2015), fewer 
studies have also considered canopy and cloud shadow effects.

The potential for addressing shadow effects varies across ecosystems 
and depends on data availability. In forest ecosystems, shadow removal 
is relatively straightforward; simulated shaded pixels at the time of 
acquisition can be created from a canopy surface model derived from 
photogrammetry or light detection and ranging (LiDAR) data 
(Grubinger et al., 2023). However, such data and techniques are not 
always available or feasible in other habitats when individual plants are 
much smaller, as in grasslands. Consequently, most studies continue to 
rely on thresholding reflectance data to remove dark pixels classified as 
shadows (Adeline et al., 2013; Badourdine et al., 2023; Lopatin et al., 
2019; Rüfenacht et al., 2014; Schweiger and Laliberté, 2022). To address 
these differences and evaluate the generality of methodological out-
comes, we included both forest and open vegetation sites in our analysis. 
This allowed us to assess spectral–plant diversity relationships across 
contrasting functional types and spatial resolutions, providing a more 
robust evaluation of how methodological choices scale across 
ecosystems.

In airborne hyperspectral data, fine spatial resolution often 

highlights what we can consider non-ecological variation, which arises 
from factors such as heterogeneous illumination conditions between and 
within flight lines, unrelated to vegetation properties, and leading to a 
significant increase in spectral variation that is unrelated to the reflec-
tance properties of plant tissues (Arroyo-Mora et al., 2021; Behmann 
et al., 2016; Manea and Calin, 2015). In contrast, ‘ecological variations’ 
refer to variability in the data that is due to actual ecological processes, 
such as differences in vegetation structure, species composition, or 
phenological stages. However, separating illumination effects from 
ecologically meaningful spectral variation is challenging. Illumination 
conditions are influenced not only by sensor and solar and sensor ge-
ometry but also by real ecological differences, such as canopy structure, 
vegetation height, or slope orientation. Thus, standard correction 
methods risk either leaving residual artifacts or inadvertently removing 
important biological signals. Recognizing this conundrum, several 
correction techniques have been developed to address illumination- 
related variation, such as the spectral angle mapper, brightness 
normalization, and continuum removal (Clark and Roush, 1984; Feil-
hauer et al., 2010; Féret and Asner, 2014; Jänicke et al., 2020; Kruse 
et al., 1993). While we recognize the existence of a wide range of 
hyperspectral image processing methods in foundational remote sensing 
literature (e.g., Eismann, 2012), this study focuses on a subset of ap-
proaches more widely employed in the ecological context. For instance, 
to account for varying light conditions, brightness normalization adjusts 
all pixels to a vector magnitude of 1 (Feilhauer et al., 2010). Continuum 
removal emphasizes specific absorption features by removing the gen-
eral spectral background, which might also reduce effects from varying 
illumination conditions (Clark and Roush, 1984; Serbin and Townsend, 
2020). While these spectral transformations are crucial for reducing 
brightness variations and enhancing the comparability of spectral 
reflectance data from high-resolution imagery, they may also lead to the 
loss of information related to variations in canopy structure. Overall, the 
effects of these two spectral transformations have been rarely compared 
in spectral diversity studies (Badourdine et al., 2023; Imran et al., 2021).

Once these corrections are applied, spectral diversity indices can be 
calculated from the data (Chang, 2000; Dahlin, 2016; Frye et al., 2021; 
Gholizadeh et al., 2018). The sensitivity of spectral diversity to non- 
ecological variation depends on the sensitivity of the metrics to out-
liers. Common indices employed to capture spectral variation include 
the squared mean distance of spectral values to the spectral centroid 
(Laliberté et al., 2020), the coefficient of variation (Gholizadeh et al., 
2018), and ordination-based metrics such as convex hull volume 
(Gholizadeh et al., 2018). These metrics, which are analogous to metrics 
of plant functional diversity, vary in their sensitivity to outliers. Spectral 
diversity metrics can be calculated based on the full spectrum or selected 
wavelength bands which poses another source of variation in SVH 
studies. Some studies claim that the choice of bands is of high impor-
tance (Gholizadeh et al., 2018; Wang et al., 2018), though the optimal 
spectral region for calculating spectral diversity can also depend on the 
investigated vegetation type (Wallis et al., 2024). Therefore, the choice 
of spectral diversity metrics and incorporated wavelength bands might 
have important consequences for assessments of plant diversity.

Methodological aspects - particularly the combined effects of spatial 
resolution, shadow removal, and spectral transformations - require 
systematic analysis to understand their influence on the success of the 
SVH. Here we explore the effects of key methodological decisions on 
variance-based spectral diversity metrics and their relationships to plant 
functional diversity. Using field and hyperspectral data covering visible 
(VIS) to near infrared (NIR) wavelengths in forest and open ecosystems 
within Canada, we examine the impact of spatial resolution, shadow 
removal, and spectral transformations (brightness normalization vs. 
continuum removal). We quantified correlations between plant func-
tional diversity and different variance-based spectral diversity metrics, 
and tested how these correlations and the importance of different 
wavelength bands between 450 and 900 nm depend on methodological 
decisions. Our focus is on guiding researchers through potential 
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challenges and pitfalls in SVH studies at the landscape scale.

2. Data and methods

2.1. Study sites

The Canadian Airborne Biodiversity Observatory (CABO) is an 
initiative that utilizes airborne remote sensing technologies to monitor 
and study biodiversity across Canada. It consists of a network of diverse 
sites selected to capture a broad range of ecosystem types (wetland, 
temperate forest, boreal forest, grassland, savannah), while also being 
accessible and well-studied.

To test the SVH in open vegetation and forests, we used five out of six 
sites from the CABO project located in southern Quebec, Ontario and 
coastal British Columbia (Fig. 1, Table 1). Open vegetation includes the 
grassland portion of a savannah (Cowichan Garry Oak Preserve, CGOP; 
surveyed in May 2019, see also (Hacker et al., 2022), a peatland (Mer 
Bleue, MB; surveyed in July 2019, (Girard et al., 2020), and an aban-
doned agricultural field within Parc national des Îles-de-Boucherville 
(̂Ile Grosbois de Boucherville, IGB; surveyed in August 2018, Elmer 
et al., 2021). The two forest sites are located within Parc national du 
Mont-Saint-Bruno (MSB) and Parc national du Mont-Mégantic (MMG), 
both in Québec, surveyed in 2018, 2019 and 2020 (Crofts et al., 2024a; 
Wallis et al., 2023). Unfortunately, another CABO site in the Arctic could 
not be included because field data sampling and UAV flights were 
postponed due to the pandemic in 2020.

2.2. Vegetation surveys

Plant inventories were conducted in 2018, 2019 and 2020. Open 
vegetation plots were 3 m × 3 m quadrats, and forest plots were circular 
with a radius of 15 m. All plant inventories followed standardized pro-
tocols from the CABO project (Crofts et al., 2022; St-Jean and Vellend, 
2020). Because we expect the spectral diversity-plant diversity 

relationship to be strongest when only the plant portions exposed to 
direct overhead light are used, we measured species abundance from the 
canopy as visible from above. For open vegetation, field inventories to 
quantify species abundance were done visually from an elevated ladder 
in the field or using images from small drones where applicable (St-Jean 
and Laliberté, 2020). For forests, all crowns were delineated in the field 
and we applied a GIS-based approach to extract the top crown layer 
using the ‘sf’ package in R (Pebesma, 2018; for details see Wallis et al., 
2023).

Leaf trait measurements at the five sites followed the CABO trait 
sampling protocols (Ayotte and Laliberté, 2019; Laliberté, 2018). We 
selected three traits with high coverage across species at our sites: leaf 
nitrogen concentration (N; mass-based), leaf dry matter content (LDMC) 
and leaf mass per area (LMA). To enhance trait coverage up to more than 
99 % per plot, we used a gap-filling procedure to fill in missing trait 
values for certain species with trait values from the TRY database 
(Kattge et al., 2020; see supplementary data in Wallis et al., 2024). We 
note that the use of imputed trait values from the TRY database may 
introduce additional uncertainty. However, because the majority of trait 
data were collected directly in the field and only a small proportion of 
values were gap-filled, we expect the overall impact on trait variation 
and downstream analyses to be minimal. We calculated functional di-
versity using the ‘FD’ package in R (Laliberté et al., 2014; Laliberté and 
Legendre, 2010). Specifically, we used functional dispersion (FDis), 
which was weighted by species abundance. FDis considers the disper-
sion of species in trait space relative to the centroid and can accom-
modate communities with a single plant species.

2.3. Hyperspectral surveys

Hyperspectral surveys were conducted alongside the plant in-
ventories in 2018, 2019 and 2020 using two comparable hyperspectral 
pushbroom imagers that collected spectral information across 288 
spectral bands covering the visible and near-infrared (NIR) regions 

Fig. 1. Study sites located across Canada are a) a grassland (CGOP), b) a peatland (MB), c) an abandoned agricultural site (IGB) as well as two forested sites (d) MSB 
and e) MMG). MMG is characterized by a transition from deciduous to coniferous species along with higher elevation. Figure adapted from Wallis et al. (2024). 
photographs from the five sites.
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(Table 1). The μCASI sensor used at the open vegetation sites was 
mounted on an unoccupied aerial vehicle (UAV) and recorded data 
resampled to a pixel size of 3 cm (401–995 nm; Arroyo-Mora et al., 
2019). The CASI-1500 sensor used at forest sites was onboard the Twin 
Otter fixed-wing aircraft operated by the National Research Council of 
Canada, Flight Research Lab (NRC-FRL) and recorded data resampled to 
~2 m pixel size (375–1061 nm; (Inamdar et al., 2021a). The spectral 
resolutions of the two sensors were comparable, with μCASI offering a 
full width at half maximum (FWHM) of approximately 2.1 nm, and the 
CASI-1500 a slightly broader FWHM of around 2.4 nm. To ensure 
spectral consistency across sensors, all μCASI data were spectrally 
resampled to match the spectral response of the CASI-1500 prior to 
further analyses (see next section hyperspectral post-processing). Given 
the high spectral resolution of both sensors and the resampling step, 
differences in spectral resolution are unlikely to have influenced the 
subsequent analyses.

Most hyperspectral flights were conducted around solar noon, when 
the solar zenith angle was lowest and the solar elevation angle 
approached its daily maximum (typically around 60–70◦ at our sites), 
meaning that illumination conditions were optimal and shadowing ef-
fects were minimal. The one exception was Îles-de-Boucherville 
(Table 1) where the park required that the UAV flights be completed 
early morning to minimize disruption to the park visitors. The raw 
hyperspectral data underwent standard pre-processing steps, including a 
radiometric, and atmospheric correction (Inamdar et al., 2021b). The 
atmospheric correction was applied in ATCOR-4 software, which utilizes 
a Look-Up Table (LUT) method for atmospheric correction following the 
approach in Soffer et al. (2019). This approach is consistent with the 
methods employed in Arroyo-Mora et al. (2021) and Inamdar et al. 
(2021a, 2021b), who utilized the same data and processing techniques 
as in our study (see also Fig. S1).

For the MMG imagery, a topographic correction was applied due to 
its elevation gradient, which spans from deciduous temperate forest to 
coniferous boreal forest. The presence of varying slopes and surface 
types in this area necessitated a correction to account for incident angle 
effects on the spectral reflectance. This correction was implemented 
using the Lambert + Statistical-Empirical approach (Richter and 
Schläpfer, 2019), and used LiDAR data from the Ministry of Forests, 
Wildlife, and Parks of Québec (Leboeuf and Pomerleau, 2015). The 
LiDAR dataset was provided as a 1 m pixel size Digital Surface Model 
(DSM). Other sites in this study did not require a topographic correction 
as they exhibited relatively flat terrain, where such effects were less 
significant. Airborne imaging spectroscopy and field survey data for the 
forested sites is publicly available (Crofts et al., 2024b).

While airborne CASI-1500 flights were also conducted over some of 
the non-forested sites (IGB and MB), μCASI UAV flights were not con-
ducted over forests. We decided not to use CASI-1500 data for open 
vegetation sites due to the discrepancy between the species’ individual 
size and the pixel size of the airborne imagery.

2.4. Hyperspectral data extraction and preprocessing

We extracted the hyperspectral data for each field plot, using spectral 
data with a lower off-nadir viewing angle when plots were covered by 
overlapping flight lines (see fig. S2). We then applied spatial resampling, 
post-processing steps, shadow masking, illumination corrections, and 
calculated spectral diversity metrics, as detailed below.

2.5. Spatial resampling

We resampled all hyperspectral images of open vegetation to a pixel 
size of 3 cm, 10 cm, 30 cm and 60 cm using averaging following the 
approach in Wang et al. (2018). For this purpose, we used a pixel-wise 
approach in the stars package in R (Pebesma and Bivand, 2023); we 
however did not consider the point spread function which is described in 
Inamdar et al. (2023). We also did not resample the images from forested Ta
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sites since we considered the spatial resolution of approximately 2 m 
already broad.

2.6. Hyperspectral post-processing

Post-processing included removing non-vegetated pixels using NDVI 
thresholds (open vegetation: NDVI <0.35; forests: NDVI <0.75), mask-
ing spectral regions with low signal quality (<450 nm) and strong re-
sidual atmospheric water absorption (>900 nm), spectral resampling of 
μCASI using the spectral response functions of CASI-1500 data in the 
hsdar package in R (Lehnert et al., 2019) to enhance comparability be-
tween the two sensors, and spectral smoothing using a Savitzky-Golay 
filter with a defined window size of 21 bands and a polynomial of 4th 
order.

2.7. Shadow masking

Many UAV studies have performed shadow masking based on visual 
interpretation of shadowed pixels and reflectance-based histogram 
thresholding (e.g. Lopatin et al., 2019). However, visual interpretation 
of shadowed pixels is highly subjective, and different thresholds can be 
set from very conservative to minimal shadow influence. We therefore 
removed shadowed pixels by using thresholds in a red band (679 nm) for 
forests and a red-edge band (720 nm) for open vegetation. We applied 
multiple thresholds for shadow removal in both open vegetation and 
forest sites to assess how varying threshold levels affect the results. 
Specifically, thresholds were tested at low, medium, and high levels 
(Fig. S3) to evaluate their sensitivity and impact on shadow filtering. 
Plots with more than 60 % of pixels identified as shadow were excluded 
from the analyses to ensure consistency and accuracy in our data.

2.8. Illumination corrections

To reduce the impact of brightness differences across all sites and 
plots, we applied two spectral processing techniques: brightness 
normalization and continuum removal. Brightness normalization, 
following the approach of Feilhauer et al. (2010), adjusts each pixel’s 
spectral values by dividing the entire spectral vector by its magnitude. 
This process minimizes variation due to differences in illumination. 
Continuum removal is a method used to highlight absorption features in 
spectral data by removing the influence of broad spectral trends. It in-
volves dividing or subtracting the reflectance values by a continuum line 
that fits the spectral shape, thus emphasizing smaller absorption fea-
tures. We employed a segment hull approach for continuum removal, 
which detects these features more precisely. Specifically, we calculated 
the band depth by dividing the reflectance by the segment hull as well as 
the difference by subtracting the reflectance from the segment hull, as 
described by Obermeier et al. (2019) and Lehnert et al. (2019):

BDw = 1 − (REFw/SHw)

and

DIFFw = SHw − REFw,

where SH is the continuum value from the segment hull at wave-
length band w.

The results of the illumination corrections were visualized for subsets 
of flight lines for MB and MSB (see fig. S4). After continuum removal, the 
start and end bands had to be removed, and 187 spectral bands remained 
which we used to calculate spectral diversity. For comparability, we 
removed the same bands in brightness normalized spectra.

2.9. Calculation of spectral diversity

For all combinations of shadow filtering, pixel sizes, and illumination 
correction methods, we calculated three variance-based spectral di-

versity metrics: The mean absolute deviation (Wallis et al., 2024), the 
squared distance to the centroid (Sdiv, Laliberté et al., 2020) and the 
coefficient of variation (CV; Wang et al., 2018). While there are other 
spectral diversity metrics, we chose these ones because they are used 
most often in literature. They are calculated as follows: 

MAD = (1/n)Σ∣xi − μ∣ 

where n represents the number of spectral bands, xi denotes the value of 
each individual band i and μ is the mean of all spectral measurements. 

Sdiv = Σ(xi − μ)2 

where xi denotes the value of each individual band i and μ is the mean of 
all spectral measurements.

CV = (σ/μ)×100 

where σ is the standard deviation of the spectral measurements and μ 
is the mean of the spectral measurements.

To account for the removal of shadowed pixels and varying numbers 
of pixels per plot, we used a bootstrap procedure with 30 iterations, 
randomly sampling the minimum available number of pixels per plot for 
each shadow and pixel size combination.

2.10. Statistical approach

To systematically assess how different methodological settings affect 
the relationship between spectral diversity and plant functional di-
versity, we first calculated Pearson correlation coefficients across 
various combinations of pixel sizes, spectral diversity metrics, shadow 
filtering thresholds, and illumination correction methods. In addition, 
we tested Spearman’s rank and Kendall’s tau correlation coefficients to 
provide non-parametric comparisons (see Supplementary Information 
for detailed results). Analyses were conducted separately for open 
vegetation and forest sites, using the same set of field plots (44 open 
vegetation plots and 49 forest plots) to ensure consistency and 
comparability.

To further explore variation in these relationships across spatial 
scales and among sites, we calculated correlations across all sites and 
within individual sites. For this analysis, we applied a mid-level shadow 
filter and used a pixel size of 3 cm for the open ecosystems, incorporating 
all available plots for this combination, resulting in 54 plots for open 
vegetation and 60 plots for forests.

Finally, to identify the most informative spectral regions for detect-
ing functional diversity, we analyzed correlations between spectral di-
versity and plant functional diversity at individual wavelength bands 
using Pearson, Spearman’s rank, and Kendall’s tau coefficients. This 
band-specific analysis also employed the mid-level shadow filter and 3 
cm pixel size and was conducted separately for each spectral trans-
formation method.

3. Results

The functional composition of vegetation across the study sites was 
assessed using community-weighted means (CWMs) of leaf dry matter 
content (LDMC), leaf mass per area (LMA), and nitrogen concentration 
(N; mass-based) (Fig. 2). The resulting trait space captures broad site- 
level differences indicating diverse environmental gradients of the 
sites. Forested sites were distributed along an elevational gradient, with 
higher LDMC and LMA values corresponding to higher elevations. Open 
sites exhibited greater variation in nitrogen concentration indicative of 
differing nutritional regimes. The peatland site, Mer Bleue, showed 
elevated LMA values relative to other open-canopy sites reflecting a 
greater prevalence of shrubs compared to other open areas.

Our analysis revealed significant spectral variation across and within 
the analyzed vegetation sites, particularly in the NIR range (Fig. 3). 
Open vegetation sites exhibited a notably higher range of spectral 
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reflectance values (Fig. 3 a), which can be attributed to both the intrinsic 
ecological differences (such as vegetation structure and species combi-
nation) and non-ecological factors, including sensor-related noise, 
variation in illumination conditions, bare soil exposure, and other 
background effects. Specifically, the prairie site (CGOP) displayed a 
distinct spectral shape from other sites. This difference was consistent 
across all applied processing methods and calculated metrics (Fig. 4). 
However, the spectral regions with peaks of spectral variation differed 
notably across open vegetation sites when using brightness normaliza-
tion compared to continuum removal.

3.1. Impact of spectral processing methods and spectral diversity metrics 
on spectral patterns

In examining the impact of different spectral processing methods, we 
found that brightness normalization maintains the characteristic shape 
of vegetation spectra (Fig. 4 a and d). In contrast, both continuum 

removal approaches altered the spectral shape by minimizing overall 
brightness and emphasizing specific absorption features in the visible 
range (Fig. 4b–c, e–f). Band depth enhanced relative absorption 
strengths, while the difference produced spectra centered around zero 
by subtracting the continuum hull from the original reflectance. Both 
continuum removal approaches reduced values in the NIR region and 
amplified variation in the VIS range, altering the relative relationships 
between bands.

The calculation of spectral diversity metrics indicated that MAD and 
Sdiv are very similar in their outcomes (Fig. 4, second and third row), 
even though Sdiv might be more prone to outliers. The peaks of MAD, 
Sdiv and CV, however, differed depending on the choice of the illumi-
nation correction, and the type of vegetation. For instance, in open 
vegetation MAD derived from brightness normalization showed 
different peaks in spectral variation for the three sites (Fig. 4 g) while 
MAD based on both continuum-removed spectra showed two more 
uniform peaks around 450 nm and 650 nm for all the open vegetation 
sites (Fig. 4 h-I, k-l).

Our results also indicated that the CV calculated from continuum 
removal might not provide reliable information in this context (Fig. 4 t- 
u, w-x), as this method emphasizes wavelengths with low band depth 
values, which are disproportionately near zero following division or 
subtraction by the segment hull. This observation indicates that such 
values do not accurately reflect low raw reflectance values, so that 
standardization by the mean might not be meaningful.

3.2. Methodological effects on spectral-plant diversity relationships

The relationship between spectral and plant functional diversity was 
markedly dependent on the illumination correction method and the 
spectral diversity metric (Fig. 5). In open vegetation, we found negative 
relationships when calculating spectral diversity based on brightness- 
normalized spectra as well as weak to negative relationships for con-
tinuum removal based on subtraction (CR – difference; Fig. 5). In 
contrast, forested areas showed universally positive relationships across 
all metrics and methods, but certain combinations showed stronger re-
lationships, such as those involving MAD. These patterns were consis-
tent when using non-parametric correlation coefficients, including 
Kendall’s tau and Spearman’s rho (Fig. S5, S6). Pixel size and shadow 
filtering also influenced the spectral-plant diversity relationship, but 
their influence was weaker than the processing methods and metrics. In 
open vegetation, most relationships were weaker when using reflectance 
data at 60 cm pixel size. No relationship was observed for the CV based 
on continuum-removed spectra at a pixel size of 10 cm, contrasting with 
the findings at other pixel sizes for this combination. At forest sites, 
shadow filtering generally strengthened relationships, although the 
threshold levels did not always need to be high.

Fig. 2. Ternary plot of community-weighted mean (CWM) trait composition 
per plot across all studied CABO sites. Points represent plots, positioned ac-
cording to the proportion of three standardized traits: leaf nitrogen concen-
tration (N), leaf mass per area (LMA), and leaf dry matter content (LDMC). Trait 
values were min-max scaled across all plots and normalized so their proportions 
sum to 1 per plot. Colors indicate sites. Data reflect differences in dominant trait 
strategies among ecosystems.

Fig. 3. Plot-wise averaged spectral reflectance for open vegetation and forests using the smoothed mean reflectance values for each plot. Colors indicate 
different sites.
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Fig. 4. Spectral reflectance and spectral variation metrics across sites, processing methods, and spectral diversity metrics. The first row (a–f) shows mean reflec-
tance spectra for each plot after applying brightness normalization or continuum removal (CR – band depth, CR – difference). Subsequent rows display different 
spectral variation metrics: mean absolute deviation (MAD; g–l), spectral diversity (Sdiv; m–r), and coefficient of variation (CV; s–x). Reflectance spectra are unitless 
(relative reflectance), while spectral variation metrics are dimensionless except for the coefficient of variation (CV), which is normally expressed as a percentage. 
Colors represent different study sites. Panels are organized by spectral correction methods (columns) and spectral metric (rows).

Fig. 5. Pearson correlation coefficient for the relationship of functional dispersion of plants and spectral diversity based on different pixel sizes, processing methods 
and spectral diversity metrics. For forests no spatial resampling has been done. To enhance comparability, the same plots were used for all combinations (n = 44 for 
open vegetation, n = 49 for forests). Bold values indicate the highest Pearson correlation coefficient within each set of illumination corrections and spectral diversity 
metric. Significance of correlations is indicated with * for p < 0.1, ** for p < 0.01, and *** for p < 0.001.
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3.3. Spectral-plant diversity relationships across and within sites

To further examine the contrasting positive and negative relation-
ships highlighted in previous figures, we tested specific combinations of 
pixel sizes, correction methods, and shadow filtering effects on spectral- 
plant diversity relationships across and within vegetation sites (Fig. 6; 
see also Fig. S7 for 10 cm pixel size). The relationships that initially 
appeared negative across all open vegetation sites using brightness 
normalized spectral diversity or spectral diversity based on CR – dif-
ference in Fig. 5 mostly show neutral or positive relationships when 
analyzed within individual sites (Fig. 6 a, g, m, c, i, o). Relationships 
between CV and plant functional diversity in within-site analyses were 
partly negative irrespective of the illumination correction (Fig. 6 m, n, 
o).

Exploring wavelength-band-specific relationships showed that the 
spectral regions with peaks in spectral variation (Fig. 4) are not neces-
sarily those with positive relationships to plant functional diversity 
(Fig. 7). For continuum removal, the greatest positive correlations were 
found between 600 and 700 nm, followed by the spectral regions around 
500 nm and 750 nm in open vegetation, and 550 nm and 850 in forests, 
respectively (Fig. 7 columns 2, 3, 5, 6). In contrast, spectral diversity 
derived from brightness normalized spectra showed peaks around 500 
nm and between 600 and 700 nm for all spectral diversity metrics 
despite CV (Fig. 7 columns 1, 4).

4. Discussion

We investigated how various methodological decisions impact the 
application of the SVH across different ecosystems and sites. Our find-
ings reveal that spectral diversity metrics are significantly influenced by 

factors such as spatial resolution, shadow removal thresholds, and 
spectral transformations. Specifically, we observed that illumination 
correction techniques have strong effects on spectral data, with each 
method emphasizing different spectral features.

Notably, we found negative relationships between spectral and plant 
functional diversity across open vegetation sites when brightness 
normalization or continuum removal based on subtraction was applied, 
in contrast to positive relationships observed with continuum removal 
using band depth. These results underscore the difficulty of assessing the 
generality of relationships between spectral and functional plant di-
versity, highlighting a critical role of methodological decisions in 
shaping observed relationships. Ultimately, our findings suggest that the 
utility of SVH in assessing biodiversity is highly dependent on meth-
odological choices, which could lead to varying or even contradictory 
interpretations of biodiversity patterns. It is therefore essential to 
establish clear guidelines for selecting and applying these methods, 
taking into account specific characteristics of the study ecosystem and 
assessing the necessity for corrections that modify spectra beyond the 
required basic preprocessing (i.e., radiometric and atmospheric). The 
variability in results due to different processing steps suggests that 
without such guidance, the SVH may lead to inconsistent or misleading 
conclusions.

4.1. Illumination corrections

Standardizing hyperspectral data acquired under varying illumina-
tion conditions is crucial for making comparisons both within and across 
sites when applying analytical methods that are sensitive to such vari-
ation. In addition, previous studies have indicated that BRDF (Bidirec-
tional Reflectance Distribution Function) effects (not evaluated here) 

Fig. 6. Scatterplots of plant functional dispersion and spectral diversity metrics based on either brightness normalization or continuum removal (band depth or 
difference). Shadows were filtered using the mid threshold and in open vegetation raster images at a pixel size of 3 cm were used resulting in 54 plots for open 
vegetation and 60 plots for forests. Dashed black line indicates the fit across all included sites. Colored straight lines indicate the fit of within site correlations. The 
Pearson correlation coefficient and p-values are given for the across site correlations.
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and varying illumination conditions can significantly impact model re-
sults: Rossi et al. (2022), for instance, reported a negative relationship 
between plant species richness and spectral diversity metrics, attributing 
this to BRDF effects where high biomass plots with low species richness 
led to heterogeneous light scattering patterns and higher spectral di-
versity. Arroyo-Mora et al. (2021) suggested that diffuse illumination 
conditions could mitigate these effects, although acquiring hyper-
spectral data across consistently diffuse illumination conditions, both 
within and across sites, is logistically challenging.

A universal approach for illumination correction is still debated, as 
the effectiveness of different methods can vary depending on the metrics 
and applications involved. In our study, we examined two pixel-wise 
spectral transformations—brightness normalization and continuum 
removal—both of which have been used in previous ecology-driven 
studies of the SVH (Crofts et al., 2024a; Féret and Asner, 2014; 
Schweiger and Laliberté, 2022; Wallis et al., 2023). Imran et al. (2021)
found that continuum removal improved the correlation between 
variance-based spectral diversity metrics and plant diversity compared 
to no prior spectral transformation. Similarly, Liu et al. (2023) showed 
that brightness normalization enhanced data consistency within indi-
vidual crowns and improved differentiation between crowns, which was 
beneficial for modeling canopy foliar photosynthetic capacity.

Directional effects in airborne pushbroom hyperspectral imagery, 
such as those arising from varying off-nadir viewing angles, may influ-
ence apparent reflectance In our dataset, viewing angles ranged up to 
~20◦ (Fig. S2), with site-level means generally below 10◦—a range that 
is typical and operationally necessary.

Importantly, illumination geometry-related reflectance variation is 
strongly influenced by ground cover and the relative viewing geometry 
of the sensor and solar illumination (e.g., flying into or perpendicular to 
the sun) (Kalacska et al., 2018), more so than by modest viewing angle 

deviations alone. While current hyperspectral satellite missions (e.g., 
DESIS ±15◦, EnMAP up to ±30◦) operate within similar angular ranges, 
the geometry of observation in relation to illumination from low-flying 
airborne platforms becomes an important consideration which must also 
be weighted by operational and logistical constraints. Nonetheless, such 
angular variability remains a realistic source of non-ecological spectral 
variation, and future work should also consider evaluation of BRDF ef-
fect and correction strategies when feasible.

In addition, although standard atmospheric correction was applied 
using ATCOR-4, residual atmospheric features remain visible in some 
pixel reflectance spectra as expected (Fig. S1). This is a known limitation 
of radiation transfer-based models, which are often parameterized using 
standard atmospheres and do not fully capture real-world variability in 
atmospheric composition and conditions. As such, minor residual arti-
facts are expected, particularly in absorption bands associated with 
water vapor, carbon dioxide, oxygen and other atmospheric constitu-
ents. While such effects can introduce some uncertainty in spectral 
reflectance, their influence is likely modest compared to the primary 
methodological factors considered in this study. It is important for users 
of such data to be aware of the wavelength regions affected by various 
atmospheric constituents to ensure those residual features are not used 
in further analysis. In most hyperspectral workflows, these regions are 
typically masked or excluded from downstream analysis. More advanced 
correction approaches — such as localized calibration using reflectance 
panels or on-site atmospheric column characterization with radio-
sondes, dropsondes, and atmospheric composition sensors followed by 
more detailed modeling via tools like 6S or MODTRAN — can reduce 
these residuals but are often not operationally feasible. We note that 
minimizing such non-ecological variation remains an important goal for 
improving comparability in spectral diversity studies.

These effects are especially relevant in spectral diversity studies, 

Fig. 7. Pearson correlation coefficients between plant functional dispersion and spectral diversity, calculated for individual wavelength bands for each site, as well as 
for all open vegetation and forests (dashed black line). Corresponding results using Spearman’s rho and Kendall’s tau are provided in Supplementary Fig. 8 and 9.
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where it is essential to minimize non-ecological influences and preserve 
ecologically meaningful variance. More advanced approaches, such as 
those utilizing kernel-based bidirectional reflectance correction, are 
considered standard in many hyperspectral workflows (Pokrovsky and 
Roujean, 2003), potentially addressing illumination effects more 
comprehensively than pixel-wise transformations.

While the illumination correction methods we tested varied in their 
ability to standardize spectral signals, their performance was not uni-
form across ecosystems. In the following section, we examine how 
vegetation structure and context influenced these results.

4.2. Comparability across sites and ecosystem types

We included both forest and open vegetation sites to evaluate how 
spectral–plant diversity relationships respond to methodological choices 
across ecosystems that differ in structure, composition, and spatial scale. 
For spectral diversity, we found positive relationships within individual 
open vegetation sites using the MAD and Sdiv metrics. However, across 
open vegetation sites, these relationships weakened or became slightly 
negative when brightness-normalized spectra were used. In contrast, 
continuum removal based on band depth yielded consistently positive 
relationships across all sites and methods. This suggests that brightness 
normalization alone does not sufficiently standardize spectral informa-
tion for comparisons across heterogeneous open ecosystems. As noted by 
Feilhauer et al. (2010), brightness normalization only partially corrects 
for variability caused by factors such as LAI and viewing geometry.

Forest sites showed more consistent relationships across all pre-
processing methods. This likely reflects their more uniform canopy 
structure and lower variability in background effects, which reduce 
methodological sensitivity. Although only one of the forest sites (MMG) 
was topographically corrected, both forest sites yielded comparable re-
sults, suggesting that topographic correction had limited impact relative 
to the overall structural homogeneity of forest canopies. Still, spectral 
diversity metrics based on band depth produced stronger and more 
stable relationships than those based on subtraction or brightness 
normalization, even in the forest data. Stronger relationships observed 
at MMG may also reflect ecological drivers, including a clear elevational 
gradient and associated turnover in species and traits (Wallis et al., 
2024). A controlled comparison of the effects of topographic correction 
was not possible, as uncorrected imagery was unavailable for MMG. 
While MSB could be considered a reference, its flatter topography and 
lower functional diversity limited its value for comparison. Nonetheless, 
our results suggest that topographic correction may enhance compara-
bility in structurally complex terrain when paired with robust spectral 
normalization.

In summary, our results revealed a striking difference between for-
ests and open vegetation. Not only were correlations between spectral 
and functional diversity generally weaker in open vegetation but in 
some cases they were even negative. These findings are consistent with 
previous work showing that the performance of spectral diversity met-
rics depends on canopy structure, plant size relative to pixels, and LAI 
(Schweiger and Laliberté, 2022). As discussed in Torresani et al. (2024), 
these ecosystem-level characteristics introduce uncertainties that 
complicate efforts to define a universal implementation of the SVH. 
Viewed from above, forests in our region appear largely uniform in 
spectral properties, dominated by live foliage despite some variation in 
illumination and shading. This spectral uniformity likely enhances the 
performance of the SVH in forested systems. In contrast, open vegetation 
includes more visible dead biomass, bare ground, non-vascular plants or 
lichens, as well as a larger diversity of plant architectures and leaf 
morphologies. These features contribute to spectral complexity and 
subpixel heterogeneity, especially when individual plants are smaller 
than the pixel resolution or pixel size. Importantly, our forest sites were 
imaged using airborne sensors with coarser spatial resolution and larger 
pixel size (2 m), while the open vegetation sites were surveyed using a 
UAV-based sensor at finer resolution and smaller pixel size (3 cm). This 

difference in scale was appropriate for each ecosystem, but it may also 
contribute to the observed differences in SVH performance, as smaller 
pixels tend to capture greater within-site spectral variation and are more 
sensitive to effects such as shadowing. Even the small pixels in open 
vegetation are more likely to include mixtures of species and non- 
vegetated elements than in forests (Gholizadeh et al., 2018), which 
may reduce the strength and consistency of SVH relationships across 
such heterogeneous sites. Thus, caution is needed when interpreting 
cross-ecosystem comparisons that also differ in spatial scale. Our results 
suggest that open vegetation sites are more sensitive to methodological 
choices due to their greater structural and spectral heterogeneity. While 
this presents challenges for SVH applications, our findings also show 
that appropriate preprocessing methods—particularly band depth cor-
rection—can improve comparability across sites and ecosystem types.

4.3. Combined effects of spectral transformations, spectral diversity 
metrics and spectral regions

While we showed that the two investigated illumination corrections 
can have a major impact on spectral-plant functional diversity re-
lationships, we also identified that they impacted the shape of the 
reflectance data, their spectral diversity and the most important wave-
length band regions for predicting plant functional diversity.

Brightness normalization maintained the characteristic spectral 
shape, reducing the magnitude of values without altering the relative 
differences between bands. However, the spectral regions with peaks of 
variation (MAD and Sdiv) among open vegetation sites differed notably 
when brightness normalization was used compared to continuum 
removal. Continuum removal using band depth and difference empha-
sized two absorption features around 450 nm and 650 nm, resulting in 
more uniform spectral diversity metrics across all wavelength bands and 
sites. This method significantly altered the spectral pattern by empha-
sizing the VIS spectrum and reducing values in the NIR, potentially of-
fering a more balanced view of spectral diversity across spectral regions. 
These differences in spectral patterns highlight the sensitivity of spectral 
diversity metrics to preprocessing methods. However, it has also been 
argued that metrics relying on first-order statistics or those influenced 
by spectral amplitude over shape may be less effective for certain ap-
plications (Landgrebe, 2002).

The coefficient of variation (CV) from continuum-removed spectra 
did not exhibit the same clear spectral regions as observed with MAD 
and SDiv metrics (Fig. 4n versus Fig. 4f,b). This discrepancy likely arises 
because CV is standardized to the mean, which often approaches zero 
after continuum removal, making CV values unstable. However, when 
examining band-wise correlations (Fig. 6j for CV compared to Fig. 6f for 
MAD and Fig. 6b for SDiv), we find that the spectral regions with high 
correlations (i.e., informative wavelengths) largely overlap across all 
three metrics. Specifically, the same peaks in the near-infrared (around 
750–850 nm) and red-edge regions (around 700–730 nm) are apparent. 
This overlap indicates that, despite the biases observed at the full- 
spectrum metric level (e.g., in Fig. 4n), CV from continuum-removed 
spectra still captures meaningful ecological variation when examined 
at the band level. Thus, CV remains an informative metric for capturing 
spectral diversity patterns, especially when focusing on specific wave-
length regions.

We found that the importance of spectral regions depended on the 
illumination correction applied. High correlations with plant functional 
diversity were found in the red part of the spectrum, particularly within 
open vegetation sites, supporting the findings of previous studies 
(Gholizadeh et al., 2018; Imran et al., 2021). Similarly, high correlations 
were found in forested areas when both forest sites were considered. It is 
important to note that these findings are based on the specific correction 
methods and analytical approaches used in this study. Other techniques, 
such as feature extraction or shape metrics, may yield different patterns 
of spectral importance. Additionally, important spectral regions might 
also differ across spatial resolutions, as identified by Gholizadeh et al. 
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(2018), adding further complexity which was not tested here.
Overall, while spectral diversity metrics and specific spectral regions 

provide valuable insights, the choice of preprocessing methods and the 
spectral regions emphasized can significantly influence the outcomes of 
spectral-plant diversity approaches. Therefore, the selection of pre-
processing techniques and the spectral regions emphasized are not just 
methodological choices but critical determinants of the accuracy and 
reliability of spectral-plant diversity assessments, directly shaping the 
ecological insights derived from remote sensing data.

4.4. Spatial resolution and shadow filtering

In our study, finer spatial resolutions (pixel size of 3–30 cm) were 
essential for accurately capturing the heterogeneity of plant species and 
their spectral signatures in open vegetation sites. Coarser resolutions, 
here 60 cm, showed a decrease in the model fit of most plant-spectral 
diversity relationships (Fig. 4). At this spatial resolution, mixed pixels 
likely obscure the spectral characteristics of individual species, thereby 
compromising the reliability of spectral diversity metrics. These findings 
confirm prior studies indicating the importance of matching spatial 
resolution with the scale of the target vegetation to improve the preci-
sion of biodiversity assessments (Rossi et al., 2022; Wang et al., 2018).

We employed a relatively simple shadow removal technique that is 
commonly used in studies of various ecosystems (e.g., Badourdine et al., 
2023; Schweiger and Laliberté, 2022). However, this approach relies on 
subjective visual interpretation of shadowed pixels, which could affect 
its effectiveness. Compared to other methodological effects explored in 
this study, the three different thresholds for shadow masking had a 
relatively minor impact on the relationships between spectral diversity 
and plant functional diversity. This is in contrast to previous studies that 
highlighted shadows as a confounding effect on spectral analysis and as 
an important methodological step when working with (hyper-)spectral 
data (Adeline et al., 2013; Milas et al., 2017; Rüfenacht et al., 2014; 
Zhang et al., 2015). Lopatin et al. (2019) recommend minimizing 
shadow effects during analysis, as even with calibration, misclassifica-
tion rates of vegetation classes in shadowed areas can reach up to 100 %. 
While more advanced methods like deep learning could reduce shadow- 
related errors, Lopatin et al. (2019) suggest that pre-processing to 
remove shadows remains essential. For UAV-based data collection, 
acquisition around solar noon (~13:00 local time) is recommended to 
limit shadow interference. However, given the broad spatial coverage 
and the associated costs of UAV campaigns, data collection often spans 
multiple days and times, making shadow minimization during data 
collection challenging.

While large shadows were removed using reflectance thresholds in 
our study, many pixels likely contain some level of subpixel shadowing, 
and inscattering even under near-optimal light conditions. These small- 
scale shadows are harder to detect but may still influence spectral 
variation in ways unrelated to vegetation. Recent approaches such as 
object-based spectral unmixing offer potential for addressing this issue 
more precisely (Zhang et al., 2025), though their use in biodiversity 
studies is still emerging. Continued development and testing of such 
approaches could improve the robustness of spectral diversity metrics in 
high-resolution imaging spectroscopy.

5. Conclusion

This study underscores the crucial role of methodological choices in 
spectral diversity assessments and their connection to plant functional 
diversity. Our results demonstrate that different illumination correc-
tions, spectral diversity metrics, and wavelength regions significantly 
influence spectral diversity’s rank-order across sites and its relation to 
plant functional diversity, while spatial resolution and shadow filtering 
have a lesser but still important effect. The variability observed in 
spectral diversity across diverse ecosystems, especially in open vegeta-
tion sites, underscores the challenges of disentangling the effects of 

brightness and trait variation. The findings suggest that careful consid-
eration of these methodological aspects is crucial for accurate spectral 
diversity assessments. We need to ask which information is ecologically 
driven and which is due to non-ecological effects. To enhance remote 
sensing applications and improve biodiversity monitoring, future 
research should focus on standardizing hyperspectral data across sites 
and sensors, addressing the complexities introduced by illumination and 
spectral processing methods.
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Badourdine, C., Féret, J.-B., Pélissier, R., Vincent, G., 2023. Exploring the link between 
spectral variance and upper canopy taxonomic diversity in a tropical forest: 
influence of spectral processing and feature selection. Remote Sens. Ecol. Conserv. 9, 
235–250. https://doi.org/10.1002/rse2.306.

Behmann, J., Mahlein, A.-K., Paulus, S., Dupuis, J., Kuhlmann, H., Oerke, E.-C., 
Plümer, L., 2016. Generation and application of hyperspectral 3D plant models: 
methods and challenges. Mach. Vis. Appl. 27, 611–624. https://doi.org/10.1007/ 
s00138-015-0716-8.

Cavender-Bares, J., Gamon, J.A., Hobbie, S.E., Madritch, M.D., Meireles, J.E., 
Schweiger, A.K., Townsend, P.A., 2017. Harnessing plant spectra to integrate the 
biodiversity sciences across biological and spatial scales. Am. J. Bot. 104, 966–969. 
https://doi.org/10.3732/ajb.1700061.

Chang, C.-I., 2000. An information-theoretic approach to spectral variability, similarity, 
and discrimination for hyperspectral image analysis. Inf. Theory IEEE Trans. On 46, 
1927–1932. https://doi.org/10.1109/18.857802.

Clark, R.N., Roush, T.L., 1984. Reflectance spectroscopy: quantitative analysis 
techniques for remote sensing applications. J. Geophys. Res. Solid Earth 89, 
6329–6340. https://doi.org/10.1029/JB089iB07p06329.

Conti, L., Malavasi, M., Galland, T., Komárek, J., Lagner, O., Carmona, C.P., de Bello, F., 
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Hereş, A.-M., Herz, K., Heuertz, M., Hickler, T., Hietz, P., Higuchi, P., Hipp, A.L., 
Hirons, A., Hock, M., Hogan, J.A., Holl, K., Honnay, O., Hornstein, D., Hou, E., 
Hough-Snee, N., Hovstad, K.A., Ichie, T., Igić, B., Illa, E., Isaac, M., Ishihara, M., 
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I.C., Zotz, G., Wirth, C., 2020. TRY plant trait database – enhanced coverage and 
open access. Glob. Chang. Biol. 26, 119–188. doi:https://doi.org/10.1111/ 
gcb.14904.

Kalacska, M., Arroyo-Mora, J.P., Soffer, R.J., Roulet, N.T., Moore, T.R., Humphreys, E., 
Leblanc, G., Lucanus, O., Inamdar, D., 2018. Estimating peatland water table depth 
and net ecosystem exchange: A comparison between satellite and airborne imagery. 
Remote Sens. 10, 687. https://doi.org/10.3390/rs10050687.

Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, A.T., Barloon, P. 
J., Goetz, A.F.H., 1993. The spectral image processing system (SIPS)—interactive 
visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 
Airbone Imag. Spectr. 44, 145–163. https://doi.org/10.1016/0034-4257(93)90013- 
N.
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Laliberté, E., Legendre, P., 2010. A distance-based framework for measuring functional 

diversity from multiple traits. Ecology 91, 299–305. https://doi.org/10.1890/08- 
2244.1.
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