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A B S T R A C T

While remote sensing has increasingly been applied to estimate α biodiversity directly through optical diversity,
there is a need to better understand the mechanisms behind the optical diversity-biodiversity relationship. Here,
we examined the relative contributions of species richness, evenness, and composition to the spectral reflectance,
and consider factors confounding the remote estimation of species diversity in a prairie ecosystem experiment at
Cedar Creek Ecosystem Science Reserve, Minnesota. We collected hyperspectral reflectance of 16 prairie species
using a tram-mounted imaging spectrometer, and a full-range field spectrometer with a leaf clip, and simulated
plot-level images from both instruments with different species richness, evenness and composition. Two optical
diversity metrics were explored: the coefficient of variation (CV) of spectral reflectance in space and classified
species derived from Partial Least Squares Discriminant Analysis (PLS-DA), a spectral classification method. Both
optical diversity metrics (CV and PLS-DA classified species) were affected by species richness and evenness.
Diversity metrics that combined species richness and evenness together (e.g. Shannon's index) were more
strongly correlated with optical diversity than either metric alone. Image-derived data were influenced by both
leaf traits and canopy structure and showed larger spectral variability than leaf clip data, indicating that sam-
pling methods influence optical diversity. Leaf and canopy traits both contributed to optical diversity, sometimes
in complex or contradictory ways. Large within-species variation sometimes confounded biodiversity estimation
from optical diversity, and a single species markedly altered the optical-biodiversity relationship. Biodiversity
estimation from CV was strongly influenced by soil background, while estimation from PLS-DA classified species
was not sensitive to soil background. These findings are consistent with recent empirical studies and demonstrate
that modeling approaches can be used to explore effects of spatial scale and guide regional studies of biodiversity
estimation using high spatial and spectral resolution remote sensing.

1. Introduction

“Optical diversity” (Ustin and Gamon, 2010), sometimes called
“spectral diversity” (Palmer et al., 2002), indicates the variation in
spectral reflectance detected by optical remote sensing. Many remote
sensing indices have been applied to assess vegetation diversity and
composition using optical measurements. These metrics can be divided
into two major categories: 1) species-based metrics; and 2) information
content-based metrics. Species-based metrics typically apply a classifi-
cation, either unsupervised (Féret and Asner, 2014) or object-based

(Schäfer et al., 2016), to the remotely sensed images. Indices calculated
using these classified “spectral species” (Féret and Asner, 2014) are
then related to plant diversity. Here, we expanded the term “spectral
species” (Féret and Asner, 2014) to species classified from remote
sensing data using any classification method. In this case, spectral
species are considered proxies for biological species, and spatial var-
iation in spectral species can be used to infer species richness or other
metrics of α diversity, and over larger areas, β diversity.

Several factors conspire to complicate species-based methods of
detecting biodiversity using remote sensing. Variation of plant leaf
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traits and canopy structure across environmental gradients (i.e. phe-
notypic variation) can lead to high spectral variability within species
(Asner, 1998). Similarly, temporal variation in leaf traits, e.g., due to
leaf aging, can generate large intra- and interspecific variation, which
could potentially confound species identification through spectral re-
flectance (Chavana-Bryant et al., 2017). These challenges in species-
based approaches to biodiversity detection have led to alternate
methods based on information content.

Information content-based metrics extract information from the
spectral space in a number of ways, for example, by calculating the
variance of vegetation reflectance indices (e.g., NDVI) (Carlson et al.,
2007; Gould, 2000), the coefficient of variation derived from spectral
reflectance (Wang et al., 2016a), or the distance from the spectral
centroid (Palmer et al., 2002). Alternatively, information content-based
metrics can be obtained from patterns in principal component space,
such as the distance from the centroid (Rocchini, 2007), which com-
pacts spectral information and removes noise and band collinearity
(Thompson et al., 2017).

When comparing optical diversity to α diversity, stronger relation-
ships emerge when considering both species richness and evenness
(e.g., Shannon's index) relative to either diversity measure alone
(Oldeland et al., 2010; Wang et al., 2016a). Species evenness adds
additional information on stand composition, which affects spectral
variation. However, it is not clear how or to what extent species rich-
ness, evenness, and composition affect the overall optical signal, in part
because experimental approaches are difficult to apply in remote sen-
sing studies due to the large spatial scales involved. Furthermore, soil is
known to confound optical diversity estimation (Gholizadeh et al.,
2018) and these effects (species richness, evenness, composition and
soil background) can be scale-dependent (Wang et al., 2018) requiring
studies to be explicit about the spatial, temporal and spectral scales
involved.

To help address these issues, we applied a modeling framework to
investigate the effect of species richness, evenness and composition on
optical diversity using simulated hyperspectral images. For this simu-
lation, leaf reflectance measurements collected in the Cedar Creek long-
term biodiversity experiment (BioDIV) (Reich et al., 2012; Tilman,
1997) were used to model synthetic plot-level images with different
combinations of species richness, evenness, and composition. In this
modeling study, leaf spectra were collected in two ways: 1) using a leaf
clip that normalized sampling geometry and illumination; and 2) using
an imaging spectrometer mounted on a tram system that allowed for
natural variation in leaf orientation and illumination. Two types of
optical diversity metrics, the coefficient of variation (CV) and spectral
species derived from Partial Least Squares Discriminant Analysis (PLS-
DA) (Peerbhay et al., 2013), were used to estimate vegetation diversity.
In this study, by calculating optical diversity metrics on simulated
images derived from leaf-level and image-derived spectra, we addressed
the following four questions: 1) how do species richness, evenness, and
composition affect optical diversity? 2) how do sampling methods affect
optical diversity? 3) how does within-species variation affect the optical
diversity-vegetation diversity relationship? and 4) how does soil back-
ground affect optical diversity?

2. Methods

2.1. Study site

Data used in this study were collected at the Cedar Creek Ecosystem
Science Reserve, Minnesota, USA (45.40° N, 93.19° W). Since 1994, the
BioDIV experiment has maintained 167 experimental plots (9 m×9m)
with planted species richness ranging from 1 to 16 species per plot
(Tilman, 1997). The species planted in each plot were randomly se-
lected from a pool of 18 species typical of Midwestern prairie, including
C3 and C4 grasses, legumes, forbs and trees. Plots were weeded 3 to 4
times each year to remove species not included in the desired pool

(Reich et al., 2012; Tilman et al., 2001).

2.2. Spectral data

2.2.1. Leaf-level reflectance
We collected leaf level reflectance using a full range spectrometer

(HR-1024i, Spectral Vista Corporation, Poughkeepsie, NY, USA) cou-
pled with a leaf clip with an internal light source (LC-RP PRO; Spectra
Vista Corporation, Poughkeepsie, NY, USA). The spectral range of the
spectrometer covered 340.5 to 2522.8 nm in 1024 spectral bands. Noisy
spectral regions (wavelengths smaller than 400 nm and>2400 nm)
were excluded from analysis. During field measurements, leaf level
measurements (Ltarget, λ) were referenced to a white calibration disc of
the leaf clip (Lwhite reference, λ) approximately every 5min. Dark current
radiance was subtracted internally, and relative spectral reflectance
was calculated as (ρλ):

=ρ L /Lλ target,λ white reference,λ (1)

We measured up to 16 prairie species (Table 1) in 24 BioDIV plots.
We visually divided each plot into 9 subplots and sampled four, six or
eight subplots, depending on the planted species richness (four for one
or two planted species per plot, six for four species per plot, and eight
for eight or 16 species per plot). We randomly placed a 1× 1 m frame
in each sampled subplot and measured one individual of each of the
four most abundant species, with duplication of species possible when
we found fewer than four species per subplot. As a consequence, the
sample size of each species correlated with the abundance of that
species encountered during our field sampling.

In order to measure reflectance of grasses and herbaceous species
with small leaves, we aligned small leaves in the foreoptic, avoiding
overlap of adjacent leaves, covering a minimum of about 50% of the
field of view. We judged a measurement as “good” when reflectance in
the NIR shoulder (about 800 nm) was as at least 35% or higher. Soil
radiance spectra were collected using a full range spectrometer (PSR
3500, Spectral Evolution, Lawrence, MA, USA) coupled with a 4-degree
lens (Spectral Evolution, Lawrence, MA, USA) in the bare ground plots
of the BioDIV experiment in July 2016. A white reference panel
(Spectralon, Labsphere, North Sutton, NH, USA) was used to calculate
relative reflectance of the soil. The leaf-level data is available from
EcoSIS Spectral Library (https://data.ecosis.org/dataset/leaf-spectra-
big-biodiversity-experiment-cedar-creek-lter).

2.2.2. Image-derived reflectance
A push-broom imaging spectrometer (E Series, Headwall Photonics

Inc., Fitchburg, MA, USA) mounted on a tram system (Gamon et al.,
2006) at 3m above the ground surface was used to collect fine-scale
images (1 mm2 pixel resolution) of the northern-most row of each

Table 1
Species, abbreviations, and sample size per species of leaf reflectance spectra.

Species Abbrev No. of samples

Achillea millefolium L. ACHMI 134
Amorpha canescens Pursh AMOCA 88
Andropogon gerardii Vitman ANDGE 577
Asclepias tuberosa L. ASCTU 249
Koeleria cristata auct. non Pers. p.p. KOECR 44
Lespedeza capitata Michx. LESCA 370
Liatris aspera Michx. LIAAS 195
Lupinus perennis L. LUPPE 380
Monarda fistulosa L. MONFI 74
Panicum virgatum L. PANVI 169
Petalostemum candidum (Willd.) Michx. PETCA 88
Petalostemum purpureum (Vent.) Rydb. PETPU 157
Petalostemum villosum Nutt. PETVI 137
Poa pratensis L. POAPR 49
Schizachyrium scoparium (Michx.) Nash SCHSC 260
Solidago rigida L. SOLRI 173
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sampling plot at the peak of growing season in 2015 (July 17 to July 26,
2015) (Wang et al., 2018). The same 16 species measured with the SVC
field spectrometer were identified from the hyperspectral images
(Fig. 1) and a sample of 1000 leaf pixels of each species was selected to
create a pool of image-derived reflectance spectra. Unlike leaf clip-de-
rived measurements, where leaf spectra were collected under normal-
ized geometry and illumination, image-derived spectra provided a large
sample of leaves in their natural orientation and illumination, collec-
tively comprising a “canopy” spectrum for each species. This set of
image-derived spectra allowed us to explore the effect of including
natural variation in leaf reflectance due to illumination and plant
geometry (e.g., leaf area index and leaf angle distribution) for com-
parison with leaf clip-derived spectra where such variation was mini-
mized. Soil reflectance spectra were extracted from the bare-ground
images of low richness plots. All hyperspectral images are available
from NASA LPDAAC (doi: https://doi.org/10.5067/Community/
Headwall/HWHYPCCMN1MM.001).

2.3. Spectral variability among/within species

We applied a nonparametric multivariate analysis of variance
(NPMANOVA) to test whether species can be separated spectrally using
Euclidean distances among species' spectra. NPMANOVA was first de-
veloped for tests of differences among ecological groups (Anderson,
2001). A pseudo F-statistic is calculated as the ratio between sum of
squares among-species and sum of squares within-species (Anderson,
2001), with a large F value falsifying the null hypothesis (H0: no dif-
ference among species). The significance of the F value was tested
against a null distribution of F based on random permutations
(Anderson, 2001). The Euclidean distance (d) between two spectra (S1
and S2), is the root mean square difference between them, averaged
over the whole spectral range:
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We also applied a PLS-DA classification method to test the separ-
ability of different species. PLS-DA has been gaining attention for its
ability to accommodate high-dimensional classification problems by
handling high collinearity among predictors (Chung and Keles, 2010;
Nguyen and Rocke, 2002) and has been used to classify tree species
using airborne remote sensing (Peerbhay et al., 2013). In this study, the
PLS-DA classification was calculated using the caret R package (Kuhn,
2008). Each dataset was randomly split into two-thirds for training and

one-third for testing. The training set was used to optimize the classi-
fication model, while the testing set was used to validate the optimized
classification model. We also used the mean reflectance of each species
to test the classification model. The overall accuracy and unweighted
Kappa statistic were calculated based on the confusion matrix for the
actual and predicted species identities.

2.4. Generation of plot-level synthetic images

To investigate the individual effects of species richness, evenness,
and composition on spectral diversity, we simulated 1000 synthetic
plots consisting of 10,000 spectra per plot as follows: 1) we randomly
assigned a species richness level (between 1 and 16) to each plot; 2) we
calculated the total vegetation cover of each plot according to the es-
timated species richness-percent cover relationship (Supplemental
section 1); 3) we then randomly generated the percent cover of each
species (the range of percent cover for each species varies from 1% to
100%, with the total vegetation percentage cover of all the species
present smaller than 100%); and 4) finally, we filled the remainder of
the image with soil spectra.

To help decipher the effects of within- vs. among-species variability
on optical diversity, we used two methods of generating synthetic
images for each plot: one used the mean reflectance of each species,
which ignored within-species variation in spectral reflectance, and the
other used all reflectance spectra per species including variation due to
leaf traits and canopy structure. Both leaf level and image-derived
spectra were used to generate synthetic images, resulting in four sets of
simulated images per plot (leaf level mean reflectance of each species,
leaf level all reflectance, image-derived mean reflectance of each spe-
cies, image-derived all reflectance).

2.5. Optical diversity and conventional vegetation diversity metrics

For each simulated plot-level image we calculated two categories of
optical diversity metrics: a) the coefficient of variation (CV), which
relates to the information content or spectral “complexity” of each plot
(Rocchini et al., 2010; Wang et al., 2016a), and b) three indices based
on spectral species obtained from PLS-DA classification: spectral species
richness, and two abundance weighted metrics, including the spectral
species Shannon's index (Shannon, 1948), and spectral species Simp-
son's index (Simpson, 1949; Williams, 1964).

The average CV for each wavelength was used as an indicator of
spectral diversity:

Fig. 1. Sample image cube from Plot 11, richness= 1
(Achillea millefolium) obtained by the Headwall imaging
spectrometer showing spatial and spectral dimensions
(red arrows, covering reflectance from 400 to 1000 nm).
The yellow vector indicates the direction of cart motion.
For each image, 600 1×1mm pixels from the north side
of each scan line (pixels to the left of the yellow dashed
line) were removed from the original image to minimize
edge effects, leaving a square image cube
(1000× 1000 pixel) for further analysis. (For inter-
pretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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where σ(ρλ) and μ(ρλ) indicate the standard deviation and mean value of
reflectance at wavelength λ across all the pixels in one plot, respec-
tively and N is the number of wavelengths. In this case, CV expresses
the spectral heterogeneity among pixels with one single value per plot.
For leaf-level data, we calculated CV for VIS-NIR region (400–1000 nm)
and full spectral range (400–2500 nm) separately to investigate the
effects of spectral range on optical diversity-vegetation diversity re-
lationship. For image-derived data, we calculated CV using wavelengths
from 430 nm to 925 nm, the range available from the imaging spec-
trometer.

Conventional vegetation diversity metrics (species richness and
three abundance-weighted vegetation diversity indices (Table 2)) were
calculated based on the vegetation percentage cover of each species and
related to the optical diversity metrics (CV and spectral species based
indices) of each simulated plot.

The research questions and experimental variables used to address
these questions with the simulation approach are summarized in
Table 3.

3. Results

3.1. Reflectance and spectral separability

The two sampling methods (leaf-level vs. image-derived spectra) led
to clear differences in spectral variability, with implications for sub-
sequent analyses. Leaf-level reflectance (i.e., leaf-clip-derived spectra)
of the 16-prairie species showed properties typical of vegetation spectra
(Roberts et al., 2004; Ustin et al., 2009): absorption of blue and red
light by chlorophyll and other pigments, high reflectance in the near
infrared due to the multiple scattering, weak NIR water absorption
features near 980 and 1200 nm, and strong water absorption near 1400
and 1900 nm (Fig. 2). Image-derived reflectance, covering the VIS-NIR
region, showed patterns similar to the leaf clip-derived measurements
in the visible region but had larger variation, particularly visible in the
NIR region, resulting from varying plant geometry and illumination
(Fig. 2).

The total variance of image-derived data was much larger than leaf

clip-derived data (7.71 and 0.97, respectively). Patterns of within-spe-
cies variation were different for leaf-level and image-derived re-
flectance (Figs. 3 and S2 in Supplemental material). For example,
Amorpha canescens had the largest within-species variation for the leaf-
level data, while Petalostemum villosum had the largest within-species
distance for the image-derived data. The large within-species variation
for Petalostemum villosum captured by image-derived reflectance re-
flected variation in individual canopy elements (leaves, stems and
flowers) and canopy architecture.

Spectral separability of species can be successful if a large distance
exists between different species in spectral feature space and if the
within-species variation is less than among- species variation (Clark
et al., 2005). In this study, among-species variability was greater than
within-species variability for both leaf-level and image-derived mea-
surements when using Euclidean distance as the spectral variability
metric (as indicated by the large F values, Table 4). For leaf-level
measurements, a slightly larger F-ratio was achieved when using full
range spectra compared to VIS-NIR spectra, indicating that full range
spectra increased species spectral separability, presumably by adding
information on leaf structure, water, and biochemical content (Asner
and Martin, 2009). The greater separation of species with image-de-
rived spectra was presumably due to the added information of canopy
structure and illumination; by contrast, standardized illumination and
geometry of the leaf-level measurements removed spectral variation
contributed by canopy structure and illumination. This result indicates
that including variation in canopy structure, e.g. LAI, and leaf-angle
distributions can increase species separability and that leaf traits alone
do not fully explain optical diversity obtained from imaging techniques.

3.2. Information content-based optical diversity (CV)

In accordance with larger spectral distance among species captured
by image-derived reflectance relative to leaf-level reflectance, plot-level
CV values calculated with image-derived reflectance had a larger range
than CV values calculated with leaf-level reflectance (Fig. 4). However,
leaf-level CV showed stronger relationships with vegetation diversity
metrics than image-derived CV (Table 5). Using the mean reflectance
spectrum of each species to simulate the plots resulted in the strongest
relationships between plot-level CV and species richness for both leaf-
level and image-derived data (Table 5). In addition, in all cases, linear
relationships between the CV and diversity metrics that combined
evenness with species richness (Shannon's index and Simpson's index)
were stronger than the relationship between the CV and species rich-
ness alone, with the strongest relationship occurring between the CV
and Shannon's index for leaf-level and image-derived spectra (Table 5).

For both sampling methods (leaf-level and image-derived), adding
within-species variation by using the full set of spectra instead of the
mean spectrum for each species increased the CV and weakened the
relationships between the CV and all vegetation diversity metrics when
no soil spectra were added (Table 5 and Fig. 4). For the image-derived
reflectance, linear relationships between CV and diversity metrics al-
most disappeared (very small R2) when all spectra were used instead of
mean spectra. The statistically significant but weak relationships be-
tween optical diversity (CV) and vegetation diversity metrics pre-
sumably reflected the large sample (1000 synthetic plots) used in the
regression.

Adding soil spectra to the simulation increased the plot level CV
(Fig. 4), and greatly reduced the relationships with biodiversity metrics
(S, H′, D, and J'). When using the mean reflectance of each species,
including soil increased the plot level CV dramatically (approx. 500
times) and completely eliminated the CV-biodiversity relationships.
When using the full set of spectral samples, adding soil also increased
the CV and weakened the CV-biodiversity relationships, although most
relationships remained significant. Image-derived CV was less sensitive
to the inclusion of soil than the leaf-level CV (Table 5, Fig. 4). These
results reveal that both the degree of cover and bare soil affected the

Table 2
Summary of vegetation diversity metrics used in this study.

Diversity metric Description/equation

Species richness (S) Number of species

Shannon's index (H′) (Shannon, 1948) H′=−∑ pi ∗ ln (pi)
The reciprocal of Simpson's index (D) (Simpson, 1949;

Williams, 1964)
= ∑D p1/ i

2

Evenness (J') (Pielou, 1966) J′=H′/ ln (S)

Where pi is percent cover proportion of the number ith species.

Table 3
Experimental tests and variables used for each test.

Experimental test Experimental variables

Vegetation community composition Species richness, evenness, and
composition

Diversity indices CV or spectral species (PLS-DA
derived metrics)

Soil background Soil vs. no soil
Spectral range Full range (400–2400 nm) vs. VIS-

NIR (400–1000 nm)
Within species variation Full sample vs. mean spectra
Sampling methods (differences in plant

geometry and illumination)
Leaf-level vs. image-derived spectra
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information content-based spectral diversity metrics, with bare soil
lowering the ability to detect α diversity.

We analyzed the contributions of species richness and evenness to
the plot-level CV and tested for possible interactions between species
richness and evenness using ANOVA (Fig. 5 and Table 6). The shape of
the CV-richness-evenness surfaces confirmed that both species richness
and evenness affected the optical signal (Fig. 5). No statistically sig-
nificant interaction between richness and evenness was found with leaf-
level CV, while a weak interaction between richness and evenness was
found with image-derived CV, indicating that the effect of species
richness on the CV varied slightly with evenness (Table 6). For the
image-derived reflectance, increasing richness and evenness generally
increased CV values. However, it is important to note that a lot of large

CV values were found at the low richness plots and the largest CV va-
lues occurred at one of the low richness plot (richness= 2), potentially
confounding biodiversity detection.

3.3. Effects of species composition on CV

The large variation in CV apparent at low species richness suggested
that other mechanisms besides species richness and evenness affected
optical diversity. One possible explanation is the effects of species
identity, in which individual species exert seemingly idiosyncratic ef-
fects on the relationship between optical diversity and vegetation di-
versity. To further explore this possibility, we considered the effects of
species composition on CV. With the image-derived measurements, we

Fig. 2. Mean reflectance spectra of prairie species used in this study for (a) leaf-level reflectance obtained with a portable spectrometer and leaf clip covering
400–2400 nm; (b) image-derived leaf reflectance obtained with an imaging spectrometer mounted on a tram covering 400–1000 nm. Species abbreviations are given
in Table 1.

Fig. 3. Mean distance from centroid in spectral space of each species using two sampling methods (image-derived and leaf-clip-derived spectra) and two spectral
ranges (visible-NIR and full-range). The clear outlier (high value) in the image-derived distance was Petalostemum villosum (PETVI), which was in flower during the
measurements.
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noticed two distinct trends in the CV-Shannon's index relationship de-
pending upon the CV range (low or high): at low (CV < 0.5) values, we
noted a positive CV-Shannon's index relationship, while at high
(CV > 0.5) values, this trend was reversed (Table 7 and Fig. 6). Further
exploration revealed that a single species, Petalostemum villosum, which
had the largest within-species variation among all the species that in-
dicated as the largest mean distance from centroid in spectral space
(Fig. 3), was largely responsible for this effect. The decreasing CV-
Shannon's index relationship indicated that a high percentage of species
with large within-species variation (e.g. Petalostemum villosum) can lead
to an anomalously high CV values within a plot. In this case, an increase
in plot-level species diversity decreased the CV. This result revealed
that besides species richness and evenness, species identity and spectral
properties of specific species affect CV values and can confound the CV-
biodiversity relationship.

3.4. Species-based optical diversity (PLS-DA classification)

When all spectra were included, higher classification accuracy and
Kappa statistic values were achieved with leaf-level measurements than
with image-derived measurements (Table 4). This was presumably a
consequence of the image-derived spectra capturing more within-spe-
cies variation than leaf-level spectra and thus overestimating the plot-
level vegetation diversity. Most classification errors occurred among
graminoid species (Poa pratensis, Andropogon gerardi and Panicum vir-
gatum). For the leaf-level reflectance, using full range spectra increased
the classification accuracy (Table 4), indicating that including in-
formation in the SWIR wavelengths increased the species separability.

The effect of using the mean reflectance vs. all spectra on biodi-
versity prediction accuracy changed between leaf-level and image-de-
rived data. For leaf-level data, when the mean reflectance of each
species was used instead of all individual spectra to test the PLSDA
classifier, the classification accuracy declined from 0.78 to 0.75 using
VIS-NIR wavelengths or from 0.80 to 0.69 using full-range spectra. By
contrast, for image-derived data, the overall classification accuracy was
actually highest (16/16) when using mean spectra, and declined to 0.73
when using all spectra (Table 4 and Fig. 7). When using mean re-
flectance spectra, species richness, Shannon's index and Simpson's index
were underestimated by spectral species metrics using leaf-level data
(Fig. 7 a, b, c). When using all reflectance spectra, vegetation diversity

metrics were generally overestimated by spectral species metrics for
both leaf-level and image-derived reflectance (Fig. 7d, e, f). This in-
dicated that the spectral sampling method influenced the spectral se-
parability in complex and seemingly contradictory ways that had sig-
nificant implications for biodiversity estimation.

Table 4
Results of non-parametric multivariate analysis of variance (NPMANOVA),
comparing among- and within-species spectral variation using Euclidean dis-
tance and overall accuracy and Kappa statistic of the PLS-DA classification.

Spectral region Bands NPMANOVA PLSDA

F ratios Overall
accuracy

Kappa
statistic

Leaf-level VIS-NIR (mean
Refa)

601 –b 0.75 0.73

Leaf-level VIS-NIR (all
samples)

113.02⁎⁎⁎ 0.78 0.76

Leaf-level full spectra
(mean Refa)

2001 –b 0.69 0.67

Leaf-level full spectra (all
samples)

188.89⁎⁎⁎ 0.80 0.77

Image-derived VIS-NIR
(mean Refa)

762 –b 1 1

Image-derived VIS-NIR
(all samples)

694.94⁎⁎⁎ 0.73 0.70

a Mean reflectance of each species was used to generate the simulation plots.
b NPMANOVA was not applied to the mean reflectance data because the

within species variation equals 0 in this case.
⁎⁎⁎ Indicates p < 0.01. p values were calculated by permutation since the

distributions of the F-ratios are not distributed like Fisher's F-ratio under the
null hypothesis (Anderson, 2001).

Fig. 4. Coefficient of variation (CV)-Shannon's index relationships from simu-
lated plots using (a) leaf-level VIS-NIR spectra, (b) leaf-level full range, and (c)
image-derived spectra. The CV calculated with soil spectra were plotted on the
right Y-axis. The CV-biodiversity relationships were summarized in Table 5.
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4. Discussion

Vegetation canopy reflectance is influenced both by leaf traits and
canopy structure (Ollinger, 2011), and it has been debated whether the
estimation of some leaf level traits (e.g., leaf nitrogen content) could be
confounded by canopy structure when retrieved from canopy level re-
flectance (Knyazikhin et al., 2013; Townsend et al., 2013). In this study,
the different results with leaf-level vs. image-derived spectra have im-
plications for studies that “scale up” from leaf to canopy or stand-scale
to approximate canopy optical properties and estimate diversity. While
leaf-level spectra emphasize differences in biochemical and structural
traits of leaves, image-derived spectra also integrate effects of canopy
structure and multiple scattering under natural illumination from
multiple leaves and plants. When mean species spectra are used as a
way of upscaling from leaf to canopy reflectance, leaf trait values are
aggregated, eliminating the variation within species or the variation
caused by canopy structure. Our unique tram dataset allowed us to
explore the optical diversity-vegetation diversity relationship based on
spectra that covered larger and presumably more realistic variations
than leaf-level measurements alone, indicating that spectral variability
of the canopy can both confound and enhance biodiversity assessments,
depending upon the particular circumstance. It is also worth noting that
for some species with tiny leaves, the leaves may not have filled the
entire FOV of the leaf clip, leading to darker values than expected.
Methods like brightness normalization (Feilhauer et al., 2010), al-
though not used here, might be helpful in such cases.

4.1. Optical diversity: CV vs. spectral species

Diversity-indices based on information content have been used be-
fore to estimate biodiversity from satellite images (Rocchini, 2007;
Rocchini et al., 2004), and this study introduced a methodology for
examining this approach at much finer spatial scales. In keeping with
previous studies, the CV reflects a combination of species richness and
evenness, and is not always a good indicator for species richness alone
(Wang et al., 2016a; Wang et al., 2018). For example, when species
richness increases but evenness is low because a small number of spe-
cies dominate the plot, the plot-level CV remains low. Instead, CV seems
to best capture the combined effects of species richness and evenness, as
measured by Shannon's and Simpson's indices.

When using spectral species (optical types), the accuracy of biodi-
versity estimation varied with the spectral training sample (leaf-level
vs. image-derived) and the accuracy of the classification method. In this
study, the larger variability of image-derived reflectance spectra in-
corporating leaf properties and canopy architecture with complex il-
lumination and multiple scattering properties led to lower classification
accuracy than when leaf-level reflectance was used. These results in-
dicate that leaf traits and canopy traits can have independent and
contrasting influence on optical diversity signals.

4.2. Species composition effects

Species identity substantially affected both categories of optical
diversity indices: information content (CV) and species based (PLS-DA)
metrics. This study illustrated two different plot-level diversity and
composition scenarios that can generate high plot-level CV values: 1)
high species richness and evenness, which have been described in
previous spectral diversity studies (Rocchini et al., 2010; Wang et al.,
2018); and 2) low species richness with large within-species spectral
variability. In the second case, the CV of a high diversity plot simulated
using image-derived reflectance was exceeded by the CV of a low di-
versity plot dominated by a species with large intraspecific spectral
variability, P. villosum (Fig. 6). The large intra-specific variability of this
species is possibly related to spatial variation resulting from the dis-
tribution of its tiny leaflets (each about 0.635 cm long) arranged in a
dense and multi-layered pattern along the leaf rachises and plant stems.
This species happened to be in flower during our measurements, which
caused stem elongation and the emergence of bright purple flowers,
presumably contributing to this variability in optical patterns at a fine
scale. Canopy structure effects, along with the characteristics of other
plant organs such as inflorescences and fruits, can lead to substantial
illumination and scattering differences in image-derived reflectance but
not in leaf-level measurements. Our study clearly demonstrated that
both leaf traits and canopy structure influence optical diversity. Al-
though the seemingly arbitrary threshold (CV=0.5) we used in this
study to split the data influenced by this single species may not hold for
a different dataset, in this case, our results demonstrate that the pre-
sence or absence of certain species (P. villosum in this case, Fig. 6) can
influence optical diversity and alter the optical diversity-vegetation
diversity relationship. Apparently, single species can suddenly have
disproportionate impacts on its optical properties, e.g., during flow-
ering. It is worth noting that P. villosum was the only species in our
study that had a much larger within-species variation than the other
species (Figs. 3 and S2 in Supplemental section). In natural ecosystems
or at other time periods, however, other species could possibly have
large within-species variation in their optical signals caused by leaf
traits, flowering, or variable canopy structure at particularly growth
stages, possibly confounding the use of optical diversity to assess bio-
diversity, particularly when species-level information is not available.

4.3. Soil and litter background effects

The scattering and reflectance properties of non-vegetated back-
ground (e.g., soil and litter) affect canopy reflectance (Huete, 1988; van
Leeuwen and Huete, 1996), and intermediate background cover
(~50%) can have the greatest influence on overall vegetation canopy
reflectance and vegetation indices as mixed pixels (Huete, 1988). At
fine scales, our study indicated that the effects of background on de-
tecting biodiversity through optical diversity varied with the selected

Table 5
Slopes and coefficient of determination (R2) of regressions between coefficient of variation (CV) and vegetation diversity metrics (species richness (S), Shannon's
index (H′), Simpson's index (D), and evenness (J')) for different sampling methods and spectral ranges using simulated plots. Significance codes: NS, 0.05 < p, *,
0.01 < p < 0.05, **, 0.001 < p < 0.01 and ***, p < 0.001.

Mean reflectance (no soil) Full sample (no soil) Full sample (with soil)

Leaf clip-derived
(VIS-NIR)

Leaf clip-derived
(full range)

Image-derived
(VIS-NIR)

Leaf clip-derived
(VIS-NIR)

Leaf clip-derived
(full range)

Image-derived
(VIS-NIR)

Leaf clip-derived
(VIS-NIR)

Leaf clip-derived
(full range)

Image-derived
(VIS-NIR)

S 0.0041
(0.27***)

0.0044
(0.25***)

0.0067
(0.18***)

0.002
(0.11***)

0.0023
(0.14***)

0.003
(0.01***)

−0.001
(0.06***)

0.0039
(0.25***)

0.006
(0.18***)

H′ 0.031
(0.52***)

0.055
(0.51***)

0.082
(0.37***)

0.022
(0.23***)

0.029
(0.30***)

0.03
(0.03***)

NS 0.025
(0.15***)

0.038
(0.09***)

D 0.05
(0.51***)

0.016
(0.31***)

0.024
(0.22***)

0.007
(0.16***)

0.0094
(0.21***)

0.01
(0.02***)

NS 0.0057
(0.05***)

0.007
(0.02***)

J' 0.11
(0.37***)

0.12
(0.37***)

0.19
(0.32***)

0.05
(0.18***)

0.064
(0.22***)

0.1
(0.04***)

0.009
(0.01**)

NS NS
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approach. Species-based (PLS-DA) spectral diversity metrics were less
sensitive to soil background than the information content-based (CV)
metrics because different backgrounds, which are often spectrally un-
ique, can be accurately classified given high spatial resolution (Roth
et al., 2015). It is possible to exclude soil pixels at fine scales, but it is
less practical when scaling up because pixels at coarse scales are often
mixtures of plants and soil. Results from another study revealed that
excluding or correcting for soil effects improved the relationship be-
tween optical diversity and vegetation diversity (Gholizadeh et al.,
2018). Clearly, the optical properties of different backgrounds, such as
soil and litter, can confound optical diversity metrics (Fig. 4).

4.4. Choice of optical diversity metric

We suggest that there is likely no “one-size-fits-all” optical diversity
metric that works universally to estimate vegetation diversity. It ap-
pears that the performance of optical diversity metrics should be based
on the properties of the available data, the particular goals of the study,
and the scale of the sampling (Wang et al., 2018). In general, both
within- and among- species variation in reflectance properties influence
the ability of optical diversity indices to assess biodiversity. In ac-
cordance with Roth et al., 2015, conditions having larger within-species
variation than among-species variation complicates accurate detection
of biodiversity using CV (Table 5) and PLS-DA classification (Fig. 7).

Species-based (PLS-DA) metrics combined with a priori species in-
formation might work better than information content-methods (CV)
when each species has a dense distribution in spectral space and the
spectral distances between species is large enough to distinguish one
species from another. It has been reported that classification methods
can be applied to high-resolution imaging spectrometry to determine
optical diversity and thus biodiversity (Féret and Asner, 2014). How-
ever, species-based methods (PLS-DA) fail when it is impossible to find
spectral endmembers or pure pixels, such that images consist of mixed
pixels, or when species are too similar to be spectrally separated. The

Fig. 5. Plot-level CV calculated using the full set of plant reflectance spectra as
a function of species richness and evenness (soil spectra were not included).
Species richness started from 1. The 3D surface was fitted with local polynomial
regression. The CV was calculated using (a) leaf-level VIS-NIR (400–1000 nm),
(b) leaf-level full spectral range (400–2500 nm), and (c) image-derived spectra.
The ANOVA results of the CV-richness and CV-evenness relationships were
summarized in Table 6.

Table 6
ANOVA results of CV-richness and CV-evenness relationships. Significant codes:
NS, 0.05 < p, *, 0.01 < p < 0.05, **, 0.001 < p < 0.01 and ***,
p < 0.001.

Sampling method Diversity metric Mean sum of
squares

F value

Leaf-level VIS-NIR mean
reflectance

Richness 0.372 598.453⁎⁎⁎

Evenness 0.389 626.353⁎⁎⁎

Richness:Evenness 0.00091 1.464NS

Leaf-level VIS-NIR full
sample

Richness 0.0680 146.708⁎⁎⁎

Evenness 0.0833 179.720⁎⁎⁎

Richness:Evenness 0.000371 0.800NS

Leaf-level full spec mean
reflectance

Richness 0.435 531.219⁎⁎⁎

Evenness 0.48 585.919⁎⁎⁎

Richness:Evenness 0.00042 0.514NS

Leaf-level full spec full
sample

Richness 0.114 198.089⁎⁎⁎

Evenness 0.145 250.608⁎⁎⁎

Richness:Evenness 0.0018 3.1163NS

Image-derived mean
reflectance

Richness 0.976 323.54⁎⁎⁎

Evenness 1.365 452.47⁎⁎⁎

Richness:Evenness 0.0405 13.44⁎⁎⁎

Image-derived full sample Richness 0.143 13.529⁎⁎⁎

Evenness 0.376 35.501⁎⁎⁎

Richness:Evenness 0.0881 8.319⁎⁎
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accuracy decreases when scaling up to large pixel sizes due to in-
formation loss (Clark et al., 2005). Thus, the choice and success of a
particular optical diversity metric is likely scale-dependent (Wang
et al., 2018).

4.5. Unresolved questions

Timing and duration of sampling can have a profound influence on
biodiversity estimates, making it difficult to detect community diversity
from measurements at a single time point (Magurran, 2007). Including
information about vegetation phenology increases the spectral separ-
ability of species and should improve predictions of vegetation diversity
(Clark and Roberts, 2012). Therefore, including optical measurements
across the whole growing season would likely increase classification
accuracy for species that vary phenologically and whose optical

properties are affected by leaf age, leaf drop, flowering and fruiting
(Jiménez and Díaz-Delgado, 2015). For example, leaf aging and se-
nescence can cause high variation within individual tree canopies on
par with the variation detected among different individuals of the same
species or of that detected between species in leaf morphological, bio-
chemical and spectral traits of tropical tree species (Chavana-Bryant
et al., 2017). Studies have also shown that the biodiversity-productivity
relationship can vary across the growing season (Wang et al., 2016b).

This study focused on the optical properties of prairie plants during
peak growing season. We would expect different optical diversity-ve-
getation diversity relationships for contrasting biomes and commu-
nities, e.g. prairie (with small plant sizes) versus forests (where tree
crown size is typically several meters in diameter). Additionally, we
would expect that inclusion of phenological variation in spectral
properties to alter the results, so multitemporal studies are clearly
needed. Many studies have shown that it is possible to classify tree
species using airborne hyperspectral remote sensing (Asner et al., 2008;
Paz-Kagan et al., 2017) or airborne LiDAR (Clawges et al., 2008; Seidel
et al., 2013). However, there are few studies that investigate the optical
diversity of forest ecosystems at fine scales (e.g., pixel size of 10 cm or
smaller). Our recent work, while limited to a prairie system, clearly
demonstrates that consideration of spatial scale is important when as-
sessing biodiversity from remote sensing (Wang et al., 2018). Data from
contrasting ecosystems and vegetation types, including complex land-
scapes (e.g. prairie and forest combined), should be included in future
studies, with attention to the consequences of leaf traits and canopy
structure, spatial scale, and landscape structure on the optical-vegeta-
tion diversity relationship. If conducted at multiple scales, such studies
would help reveal the length scales (pixel sizes or spatial lags) at which
optical diversity can best detect various metrics of biodiversity as de-
fined by biologists. Such studies are essential if we are to develop re-
liable operational approaches for remote sensing of biodiversity.

5. Conclusions

This study used leaf-level and image-derived reflectance spectra and
a simulation approach to investigate how species richness, evenness
and composition affect the detectability of vegetation α diversity with
optical diversity. The modeling framework allowed us to isolate factors
contributing to the overall optical signal, such as leaf traits, canopy
structure, and background effects in a way that is not possible from a
single set of empirical measurements alone. We tested two metrics of
optical diversity, one based on information content (CV), and the other
based on spectral species (PLS-DA). We confirmed that optical diversity
was affected by both species richness and evenness. Species identity
substantially affected both categories of optical diversity metrics (in-
formation content-based and species-based), especially for species with
high intra-specific variation. Soil background effects varied with di-
versity metrics: information content-based metrics were sensitive to the
background, while background had limited effects on species-based
metrics. Our results demonstrate that sampling method and choice of
optical diversity indices can influence the ability to assess vegetation
diversity using remote sensing, and the best choice of optical diversity
metric will depend upon the particular study. Compared to leaf clip-
derived data, image-derived data have the ability to capture larger
within-species variability caused by differences in plant geometry and
illumination. As a consequence, image-derived data might provide a
more realistic way for assessing biodiversity using remote sensing
techniques than leaf-level data. The modeling approach used here can
help provide insights into the development of robust operational
methods for remote sensing of biodiversity.
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